View More View Less
  • 1 Department of Human Movement Sciences, College of Education and Professional Studies, Old Dominion University, Norfolk, VA, USA
  • | 2 Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
  • | 3 Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
  • | 4 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
  • | 5 School of Medicine, Emory University, Atlanta, GA, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Abstract

Reducing the risk of developing chronic disease, such as obesity and type 2 diabetes, is an important component of successful aging. Offspring born to mothers who exercise during pregnancy have improved body composition and metabolic profiles. However, mechanisms to explain this phenomenon are lacking.

Purpose

This study examined whether maternal step counts were correlated with neonatal gene expression markers related to glucose metabolism and adipogenesis.

Methods

Physical activity levels were assessed in women with male neonates via Fitbit Flex® during the second and third trimester of pregnancy. The dartos and epidermal/dermal layers of the foreskin were collected following circumcision in full-term, singleton, neonates (n = 12 dartos and n = 14 dermal). Tissue was homogenized, RNA isolated, and a NanoString code set was run to quantify a panel of genes related to glucose metabolism and adipogenesis.

Results

Twelve genes were correlated to steps per day with a P-value of <0.05. After adjusting for multiple comparisons, six genes remained significantly correlated to steps per day (False Discovery Rate-corrected P-value < 0.10). Notably, glucose transporter 1, adiponectin receptor 1, and CCAAT/enhancer-binding protein alpha and beta were positively correlated with steps per day, while peroxisome proliferator-activated receptor alpha and peroxisome proliferator-activated receptor gamma coactivator 1- alpha were negatively correlated with steps per day.

Conclusion

Maternal physical activity is associated with offspring gene expression markers of adipogenesis, insulin sensitivity and glucose uptake. Future studies should aim to mechanistically examine whether these markers are driving increased adiposity in offspring born to sedentary mothers.

Supplementary Materials

    • Supplemental Materials
  • 1.

    Nathanielsz PW, Ford SP, Long NM, Vega CC, Reyes-Castro LA, Zambrano E. Interventions to prevent adverse fetal programming due to maternal obesity during pregnancy. Nutr Rev 2013; 71(Suppl 1): S7887. https://doi.org/10.1111/nure.12062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Preston JD, Reynolds LJ, Pearson KJ. Developmental origins of health span and life span: a mini-review. Gerontology 2018; 64(3): 23745. https://doi.org/10.1159/000485506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Zambrano E, Reyes-Castro LA, Nathanielsz PW. Aging, glucocorticoids and developmental programming. Age (Dordr) 2015; 37(3): 9774. https://doi.org/10.1007/s11357-015-9774-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Tarry-Adkins JL, Ozanne SE. Nutrition in early life and age-associated diseases. Ageing Res Rev 2017; 39: 96105. https://doi.org/10.1016/j.arr.2016.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L, et al. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol 2005; 288(1): R12733. https://doi.org/10.1152/ajpregu.00354.2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Zhang ZY, Dai YB, Wang HN, Wang MW. Supplementation of the maternal diet during pregnancy with chocolate and fructose interacts with the high-fat diet of the young to facilitate the onset of metabolic disorders in rat offspring. Clin Exp Pharmacol Physiol 2013; 40(9): 65261. https://doi.org/10.1111/1440-1681.12147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Leturque A, Burnol AF, de Saintaurin MA, Penicaud L, Girard J. Effect of feeding a high-fat diet during pregnancy on glucose metabolism in the rat. Metabolism 1987; 36(1): 6670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 2005; 20(3): 34552. https://doi.org/10.1007/s11357-020-00199-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Rodriguez-Gonzalez GL, Reyes-Castro LA, Vega CC, Boeck L, Ibanez C, Nathanielsz PW, et al. Accelerated aging of reproductive capacity in male rat offspring of protein-restricted mothers is associated with increased testicular and sperm oxidative stress. Age (Dordr) 2014; 36(6): 9721. https://doi.org/10.1007/s11357-014-9721-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993; 341(8850): 93841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Palliyaguru DL, Rudderow AL, Sossong AM, Lewis KN, Younts C, Pearson KJ, et al. Perinatal diet influences health and survival in a mouse model of leukemia. Geroscience 2020; 42(4): 114755. https://doi.org/10.1007/s11357-020-00199-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lindeboom M, Portrait F, van den Berg GJ. Long-run effects on longevity of a nutritional shock early in life: the Dutch Potato famine of 1846–1847. J Health Econ 2010; 29(5): 61729. https://doi.org/10.1016/j.jhealeco.2010.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. Jama 2005; 293(15): 18617. https://doi.org/10.1001/jama.293.15.1861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. Jama 2003; 289(2): 18793. https://doi.org/10.1001/jama.289.2.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Xu W, Caracciolo B, Wang HX, Winblad B, Backman L, Qiu C, et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes 2010; 59(11): 292835. https://doi.org/10.2337/db10-0539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Morley JE. Diabetes, sarcopenia, and frailty. Clin Geriatr Med 2008; 24(3): 45569, vi. https://doi.org/10.1016/j.cger.2008.03.004.

  • 17.

    Kirkland JL. Translating the science of aging into therapeutic interventions. Cold Spring Harb Perspect Med 2016; 6(3): a025908. https://doi.org/10.1101/cshperspect.a025908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Topp R, Fahlman M, Boardley D. Healthy aging: health promotion and disease prevention. Nurs Clin North Am 2004; 39(2): 41122. https://doi.org/10.1016/j.cnur.2004.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Wang TW, Apgar BS. Exercise during pregnancy. Am Fam Physician 1998; 57(8): 184652, 57.

  • 20.

    ACOG Committee Opinion No. 650: Physical activity and exercise during pregnancy and the postpartum period. Obstet Gynecol 2015; 126(6): e13542. https://doi.org/10.1097/AOG.0000000000001214.

    • Search Google Scholar
    • Export Citation
  • 21.

    Xu WH, Wu H, Xia WL, Lan H, Wang Y, Zhang Y, et al. Physical exercise before pregnancy helps the development of mouse embryos produced in vitro. Mitochondrion 2017; 34: 3642. https://doi.org/10.1016/j.mito.2016.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wu Z, Li X, Zhang Y, Tong D, Wang L, Zhao P. Effects of sevoflurane exposure during mid-pregnancy on learning and memory in offspring rats: beneficial effects of maternal exercise. Front Cell Neurosci 2018; 12: 122. https://doi.org/10.3389/fncel.2018.00122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Blaize AN, Pearson KJ, Newcomer SC. Impact of maternal exercise during pregnancy on offspring chronic disease susceptibility. Exerc Sport Sci Rev 2015; 43(4): 198203. https://doi.org/10.1249/JES.0000000000000058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Sheldon RD, Nicole Blaize A, Fletcher JA, Pearson KJ, Donkin SS, Newcomer SC, et al. Gestational exercise protects adult male offspring from high-fat diet-induced hepatic steatosis. J Hepatol 2016; 64(1): 1718. https://doi.org/10.1016/j.jhep.2015.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Carter LG, Lewis KN, Wilkerson DC, Tobia CM, Ngo Tenlep SY, Shridas P, et al. Perinatal exercise improves glucose homeostasis in adult offspring. Am J Physiol Endocrinol Metab 2012; 303(8): E10618. https://doi.org/10.1152/ajpendo.00213.2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Carter LG, Qi NR, De Cabo R, Pearson KJ. Maternal exercise improves insulin sensitivity in mature rat offspring. Med Sci Sports Exerc 2013; 45(5): 83240. https://doi.org/10.1249/MSS.0b013e31827de953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Camarillo IG, Clah L, Zheng W, Zhou X, Larrick B, Blaize N, et al. Maternal exercise during pregnancy reduces risk of mammary tumorigenesis in rat offspring. Eur J Cancer Prev 2014; 23(6): 5025. https://doi.org/10.1097/CEJ.0000000000000029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Herring A, Donath A, Yarmolenko M, Uslar E, Conzen C, Kanakis D, et al. Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J 2012; 26(1): 11728. https://doi.org/10.1096/fj.11-193193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Stanford KI, Lee MY, Getchell KM, So K, Hirshman MF, Goodyear LJ. Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes 2015; 64(2): 42733. https://doi.org/10.2337/db13-1848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Clapp JF 3rd. Morphometric and neurodevelopmental outcome at age five years of the offspring of women who continued to exercise regularly throughout pregnancy. J Pediatr 1996; 129(6): 85663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Nomura Y, Lambertini L, Rialdi A, Lee M, Mystal EY, Grabie M, et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 2014; 21(1): 1317. https://doi.org/10.1177/1933719113492206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Reynolds LJ, Dickens BJ, Green BB, Marsit CJ, Pearson KJ. Using neonatal skin to study the developmental programming of aging. Exp Gerontol 2017; 94: 938. https://doi.org/10.1016/j.exger.2016.12.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Reynolds LJ, Pollack RI, Charnigo RJ, Rashid CS, Stromberg AJ, Shen S, et al. Increased birth weight is associated with altered gene expression in neonatal foreskin. J Dev Orig Health Dis 2017: 19. https://doi.org/10.1017/S2040174417000290.

    • Search Google Scholar
    • Export Citation
  • 34.

    Salmon AB, Dorigatti J, Huber HF, Li C, Nathanielsz PW. Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions. Geroscience 2018; 40(3): 26978. https://doi.org/10.1007/s11357-018-0024-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Morris BJ, Bailis SA, Wiswell TE. Circumcision rates in the United States: rising or falling? What effect might the new affirmative pediatric policy statement have? Mayo Clin Proc 2014; 89(5): 67786. https://doi.org/10.1016/j.mayocp.2014.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Reid RER, Insogna JA, Carver TE, Comptour AM, Bewski NA, Sciortino C, et al. Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J Sci Med Sport 2017; 20(6): 57882. https://doi.org/10.1016/j.jsams.2016.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Alharbi M, Bauman A, Neubeck L, Gallagher R. Validation of Fitbit-Flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. Eur J Prev Cardiol 2016; 23(14): 147685. https://doi.org/10.1177/2047487316634883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Nelson MB, Kaminsky LA, Dickin DC, Montoye AH. Validity of consumer-based physical activity monitors for specific activity types. Med Sci Sports Exerc 2016; 48(8): 161928. https://doi.org/10.1249/MSS.0000000000000933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Sushames A, Edwards A, Thompson F, McDermott R, Gebel K. Validity and reliability of Fitbit Flex for step count, moderate to vigorous physical activity and activity energy expenditure. PLoS One 2016; 11(9): e0161224. https://doi.org/10.1371/journal.pone.0161224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Huberty JL, Buman MP, Leiferman JA, Bushar J, Adams MA. Trajectories of objectively-measured physical activity and sedentary time over the course of pregnancy in women self-identified as inactive. Prev Med Rep 2016; 3: 35360. https://doi.org/10.1016/j.pmedr.2016.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    St-Laurent A, Mony MM, Mathieu ME, Ruchat SM. Validation of the Fitbit zip and Fitbit Flex with pregnant women in free-living conditions. J Med Eng Technol 2018; 42(4): 25964. https://doi.org/10.1080/03091902.2018.1472822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Kubota A, Nagata J, Sugiyama M, Ishiduka K, Unno Y. [How many days of pedometer monitoring predict weekly physical activity in Japanese adults?]. Nihon Koshu Eisei Zasshi 2009; 56(11): 80510.

    • Search Google Scholar
    • Export Citation
  • 43.

    Tudor-Locke C, Burkett L, Reis JP, Ainsworth BE, Macera CA, Wilson DK. How many days of pedometer monitoring predict weekly physical activity in adults? Prev Med 2005; 40(3): 2938. https://doi.org/10.1016/j.ypmed.2004.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Berglund SR, Schwietert CW, Jones AA, Stern RL, Lehmann J, Goldberg Z. Optimized methodology for sequential extraction of RNA and protein from small human skin biopsies. J Invest Dermatol 2007; 127(2): 34953. https://doi.org/10.1038/sj.jid.5700557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 2008; 26(3): 31725. https://doi.org/10.1038/nbt1385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Pinheiro J BD, DebRoy S, Sarkar D. Linear and nonlinear mixed effects model. R package version 3.1-140 ed2019.

  • 47.

    Benjamini Y KA, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 2006; 93(3): 491507.

  • 48.

    Brun RP, Tontonoz P, Forman BM, Ellis R, Chen J, Evans RM, et al. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev 1996; 10(8): 97484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47(4): 50714.

  • 50.

    Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res 2005; 51(2): 8594. https://doi.org/10.1016/j.phrs.2004.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Dietz WH. Childhood weight affects adult morbidity and mortality. J Nutr 1998; 128(2 Suppl): 411S4S. https://doi.org/10.1093/jn/128.2.411S.

  • 52.

    Zhang H, Guan M, Townsend KL, Huang TL, An D, Yan X, et al. MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1alpha signaling network. EMBO Rep 2015; 16(10): 137893. https://doi.org/10.15252/embr.201540837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Leow SC, Poschmann J, Too PG, Yin J, Joseph R, McFarlane C, et al. The transcription factor SOX6 contributes to the developmental origins of obesity by promoting adipogenesis. Development 2016; 143(6): 95061. https://doi.org/10.1242/dev.131573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Nizielski SE, Arizmendi C, Shteyngarts AR, Farrell CJ, Friedman JE. Involvement of transcription factor C/EBP-beta in stimulation of PEPCK gene expression during exercise. Am J Physiol 1996; 270(5 Pt 2): R100512. https://doi.org/10.1152/ajpregu.1996.270.5.R1005.

    • Search Google Scholar
    • Export Citation
  • 55.

    Thorens B, Charron MJ, Lodish HF. Molecular physiology of glucose transporters. Diabetes Care 1990; 13(3): 20918.

  • 56.

    Miele C, Formisano P, Condorelli G, Caruso M, Oriente F, Andreozzi F, et al. Abnormal glucose transport and GLUT1 cell-surface content in fibroblasts and skeletal muscle from NIDDM and obese subjects. Diabetologia 1997; 40(4): 4219. https://doi.org/10.1007/s001250050696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Rodnick KJ, Henriksen EJ, James DE, Holloszy JO. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. Am J Physiol 1992; 262(1 Pt 1): C914. https://doi.org/10.1152/ajpcell.1992.262.1.C9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Goodyear LJ, Hirshman MF, Valyou PM, Horton ES. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes 1992; 41(9): 10919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Acosta O, Ramirez VI, Lager S, Gaccioli F, Dudley DJ, Powell TL, et al. Increased glucose and placental GLUT-1 in large infants of obese nondiabetic mothers. Am J Obstet Gynecol 2015; 212(2): 227 e17. https://doi.org/10.1016/j.ajog.2014.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116(7): 178492. https://doi.org/10.1172/JCI29126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Elliott K, O'Conner, M., O'Conner, M. Embryogenesis in mammals. 1st ed. John Wiley & Sons, Inc.; 2008.

  • 62.

    De Kock J, Najar M, Bolleyn J, Al Battah F, Rodrigues RM, Buyl K, et al. Mesoderm-derived stem cells: the link between the transcriptome and their differentiation potential. Stem Cells Dev 2012; 21(18): 330923. https://doi.org/10.1089/scd.2011.0723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    nCounter expression data analysis Guide. Seattle, Washington: NanoString Technologies; 2012. https://www.nanostring.com/download_file/view/251/3842. 2019.

    • Search Google Scholar
    • Export Citation
  • 64.

    Reynolds LJ, Chavan NR, DeHoff LB, Preston JD, Maddox HF, O'Brien JM, et al. Smoking during pregnancy increases chemerin expression in neonatal tissue. Exp Physiol 2019; 104(1): 939. https://doi.org/10.1113/EP087307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Reynolds LJ, Dickens BJ, Green BB, Marsit CJ, Pearson KJ. Using neonatal skin to study the developmental programming of aging. Exp Gerontol 2017; 94: 938. https://doi.org/10.1016/j.exger.2016.12.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 24 24 16
Full Text Views 4 4 4
PDF Downloads 4 4 4