View More View Less
  • 1 Department of Biochemistry, Bahauddin Zakariya University, 60800, Multan, Pakistan
  • | 2 Department of Chemistry, The Women University Multan, 60000, Multan, Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Abstract

Hyperbilirubinemia or jaundice has been studied by many researchers because of its diverse causes and potential for toxicity especially in the neonate but to a lesser extent beyond the neonate as well. Several studies have been performed on the normal metabolism and metabolic disorders of bilirubin in last decades of the 20th century. The recent advancement in research and technology facilitated for the researchers to investigate new horizons of the causes and treatment of neonatal hyperbilirubinemia. This review gives a brief introduction to hyperbilirubinemia and jaundice and the recent advancement in the treatment of neonatal hyperbilirubinemia. It reports modifications in the previously used methods and findings of some newly developed ones. At present, ample literature is available discussing the issues regarding hyperbilirubinemia and jaundice, but still more research needs to be done.

  • 1.

    Hansen TWR. Core concepts: Bilirubin metabolism. NeoReviews 2010; 11(6): e316e322.

  • 2.

    Pirone CL. Bilirubin: an animal pigment in the zingiberales and diverse angiosperm orders. FIU Electronic Theses and Dissertations; 2010, vol. 336. https://doi.org/10.25148/etd.FI10122201.

    • Search Google Scholar
    • Export Citation
  • 3.

    Trivin F, Odievre M. Bilirubin metabolism in the newborn. Recent progress. Arch Fr Pediatr 1976; 33(3): 293304.

  • 4.

    Porter ML, Dennis MBL. Hyperbilirubinemia in the term newborn. Am Fam Physician 2002; 65(4): 599.

  • 5.

    Bloomer JR, Risheg H. Bilirubin and porphyrin metabolism. In: Atlas of the liver. Springer; 2004, pp. 117.

  • 6.

    Wang X, Chowdhury JR, Chowdhury NR. Bilirubin metabolism: Applied physiology. Curr Paediatr 2006; 16(1): 7074.

  • 7.

    Roy-Chowdhury N, Lu Y, Roy-Chowdhury J. Bilirbuin metabolism. Textb Hepatol Basic Sci Clin Pract 2008; 165174.

  • 8.

    Lin Z, Fontaine J, Watchko JF. Coexpression of gene polymorphisms involved in bilirubin production and metabolism. Pediatrics 2008; 122(1): e156e162.

    • Search Google Scholar
    • Export Citation
  • 9.

    van de Steeg E, Stráneckỳ V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest 2012; 122(2): 519528.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bosma PJ. Inherited disorders of bilirubin metabolism. J Hepatol 2003; 38(1): 107117.

  • 11.

    Memon N, Weinberger BI, Hegyi T, Aleksunes LM. Inherited disorders of bilirubin clearance. Pediatr Res 2016; 79(3): 378386.

  • 12.

    Bellarosa C, Bortolussi G, Tiribelli C. The role of ABC transporters in protecting cells from bilirubin toxicity. Curr Pharm Des 2009; 15(25): 28842892.

    • Search Google Scholar
    • Export Citation
  • 13.

    Ullah S, Rahman K, Hedayati M. Hyperbilirubinemia in neonates: types, causes, clinical examinations, preventive measures and treatments: A narrative review article. Iran J Public Health 2016; 45(5): 558.

    • Search Google Scholar
    • Export Citation
  • 14.

    Mitra S, Rennie J. Neonatal jaundice: Aetiology, diagnosis and treatment. Br J Hosp Med 2017; 78(12): 699704.

  • 15.

    Roy-Chowdhury J, Roy-Chowdhury N, Jansen PL. Bilirubin metabolism and its disorders. In: Zakim and Boyer’s hepatology. Elsevier Inc.; 2006, p. 14491485.

    • Search Google Scholar
    • Export Citation
  • 16.

    Kumar P, Murki S, Malik GK, Chawla D, Deorari AK, Karthi N, et al. Light-emitting diodes versus compact fluorescent tubes for phototherapy in neonatal jaundice: A multi-center randomized controlled trial. Indian Pediatr 2010; 47(2): 131137.

    • Search Google Scholar
    • Export Citation
  • 17.

    Keppler D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab Dispos 2014; 42(4): 561565.

  • 18.

    Singh A, Jialal I. Unconjugated hyperbilirubinemia 2019. In: StatPearls [Internet]. Treasure Island (FL). StatPearls Publishing; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549796/.

    • Search Google Scholar
    • Export Citation
  • 19.

    Balram C, Sabapathy K, Fei G, Khoo KS, Lee EJ. Genetic polymorphisms of UDP-glucuronosyltransferase in Asians: UGT1A1* 28 is a common allele in Indians. Pharmacogenet Genomics 2002; 12(1): 8183.

    • Search Google Scholar
    • Export Citation
  • 20.

    Boo N-Y, Sin S, Chee S-C, Mohamed M, Ahluwalia AK, Ling MM-M, et al. Genetic factors and delayed TSB monitoring and treatment as risk factors associated with severe hyperbilirubinemia in term neonates admitted for phototherapy. J Trop Pediatr 2020; 66(6): 569582.

    • Search Google Scholar
    • Export Citation
  • 21.

    Huang M-J, Lin Y-C, Liu K, Chang P-F, Huang C-S. Effects of variation status and enzyme activity for UDP-glucuronosyltransferase 1A1 gene on neonatal hyperbilirubinemia. Pediatr Neonatol 2020; 61(5): 506512.

    • Search Google Scholar
    • Export Citation
  • 22.

    Leung AK, Sauve RS. Breastfeeding and breast milk jaundice. J R Soc Health 1989; 109(6): 213217.

  • 23.

    Visentin M, Stieger B, Merz M, Kullak-Ublick GA. Octreotide inhibits the bilirubin carriers organic anion transporting polypeptides 1B1 and 1B3 and the multidrug resistance-associated protein 2. J Pharmacol Exp Ther 2015; 355(2): 145151.

    • Search Google Scholar
    • Export Citation
  • 24.

    Gondal B, Aronsohn A. Biliary interventions: A systematic approach to patients with jaundice. In: Seminars in interventional radiology. Thieme Medical Publishers; 2016, p. 253.

    • Search Google Scholar
    • Export Citation
  • 25.

    Lapham K, Novak J, Marroquin LD, Swiss R, Qin S, Strock CJ, et al. Inhibition of hepatobiliary transport activity by the antibacterial agent fusidic acid: Insights into factors contributing to conjugated hyperbilirubinemia/cholestasis. Chem Res Toxicol 2016; 29(10): 17781788.

    • Search Google Scholar
    • Export Citation
  • 26.

    Ma G, Zhang Y, Chen W, Tang Z, Xin X, Yang P, et al. Inhibition of human UGT1A1-mediated bilirubin glucuronidation by polyphenolic acids impact safety of popular salvianolic acid A/B-containing drugs and herbal products. Mol Pharm 2017; 14(9): 29522966.

    • Search Google Scholar
    • Export Citation
  • 27.

    Chiddarwar AS, D’Silva SZ, Colah RB, Ghosh K, Mukherjee MB. Genetic variations in bilirubin metabolism genes and their association with unconjugated hyperbilirubinemia in adults. Ann Hum Genet 2017; 81(1): 1119.

    • Search Google Scholar
    • Export Citation
  • 28.

    Shad MA, Haq N, Tanzila R, Ahmad HB, Mazhar H. Diagnostic criteria and contributors to Gilbert’s syndrome. J Med Plants Res 2012; 6(28): 44674474.

    • Search Google Scholar
    • Export Citation
  • 29.

    Wagner K-H, Shiels RG, Lang CA, Seyed Khoei N, Bulmer AC. Diagnostic criteria and contributors to Gilbert’s syndrome. Crit Rev Clin Lab Sci 2018; 55(2): 129139.

    • Search Google Scholar
    • Export Citation
  • 30.

    Lee C, Lee SM, Namgung R. Bilirubin metabolism and bilirubin encephalopathy. Neonatal Med 2013; 20(3): 268275.

  • 31.

    Roca L, Calligaris S, Wennberg RP, Ahlfors CE, Malik SG, Ostrow JD, et al. Factors affecting the binding of bilirubin to serum albumins: Validation and application of the peroxidase method. Pediatr Res 2006; 60(6): 724728.

    • Search Google Scholar
    • Export Citation
  • 32.

    Andreu Y, Galbán J, de Marcos S, Castillo JR. Determination of direct-bilirubin by a fluorimetric-enzymatic method based on bilirubin oxidase. Fresenius J Anal Chem 2000; 368(5): 516521.

    • Search Google Scholar
    • Export Citation
  • 33.

    Westwood A. The analysis of bilirubin in serum. Ann Clin Biochem 1991; 28(2): 119130.

  • 34.

    Klemm J, Prodromidis MI, Karayannis MI. An enzymic method for the determination of bilirubin using an oxygen electrode. Electroanal Int J Devoted Fundam Pract Asp Electroanal 2000; 12(4): 292295.

    • Search Google Scholar
    • Export Citation
  • 35.

    Birch MJ. Practical clinical biochemistry, Volume 1 by Varley H, Gowenlock AH, Bell M. London: Heinemann; 1980, pp 1277. Wiley Online Library; 1982.

    • Search Google Scholar
    • Export Citation
  • 36.

    Laeeq A, Yasin M, Chaudhry AR. Transcutaneous bilirubinometry-clinical application. J-Pak Med Assoc 1993; 43: 28.

  • 37.

    McEwen M, Reynolds KJ. Noninvasive detection of bilirubin using pulsatile absorption. Australas Phys Eng Sci Med 2006; 29(1): 7883.

  • 38.

    Adachi S, Uesugi T, Kamisaka K. Study of bilirubin metabolism by high-performance liquid chromatography: stability of bilirubin glucuronides. Arch Biochem Biophys 1985; 241(2): 486493.

    • Search Google Scholar
    • Export Citation
  • 39.

    Darch M. Role of the cytochrome P450 2A5 in bilirubin metabolism and clearance in C57BL/6 mice. [PhD Thesis]; 2016.

  • 40.

    Costarino AT, Ennever JF, Baumgart S, Speck WT, Paul M, Polin RA. Bilirubin photoisomerization in premature neonates under low-and high-dose phototherapy. Pediatrics 1985; 75(3): 519522.

    • Search Google Scholar
    • Export Citation
  • 41.

    Agati G, Fusi F, Pratesi S, Galvan P, Donzelli GP. Bilirubin photoisomerization products in serum and urine from a Crigler—Najjar type I patient treated by phototherapy. J Photochem Photobiol B 1998; 47(2–3): 181189.

    • Search Google Scholar
    • Export Citation
  • 42.

    Stephen AI, Ubwa ST, Igbum OG, Hati SS. Analytical methods comparison for the determination of bilirubin in blood samples of neonates. Adv Anal Chem 2017; 7(1): 16.

    • Search Google Scholar
    • Export Citation
  • 43.

    Kazmierczak SC, Robertson AF, Catrou PG, Briley KP, Kreamer BL, Gourley GR. Direct spectrophotometric method for measurement of bilirubin in newborns: comparison with HPLC and an automated diazo method. Clin Chem 2002; 48(7): 10961097.

    • Search Google Scholar
    • Export Citation
  • 44.

    Pichon J-BL, Riordan SM, Watchko J, Shapiro SM. The neurological sequelae of neonatal hyperbilirubinemia: definitions, diagnosis and treatment of the kernicterus spectrum disorders (KSDs). Curr Pediatr Rev 2017; 13(3): 199209.

    • Search Google Scholar
    • Export Citation
  • 45.

    Usman F, Diala UM, Shapiro S, LePichon J-B, Slusher TM. Acute bilirubin encephalopathy and its progression to kernicterus: current perspectives. Res Rep Neonatol 2018; 8: 33.

    • Search Google Scholar
    • Export Citation
  • 46.

    Shapiro SM. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol 2005; 25(1): 5459.

    • Search Google Scholar
    • Export Citation
  • 47.

    van Imhoff DE, Cuperus FJ, Dijk PH, Tiribelli C, Hulzebos CV. Kernicterus, bilirubin induced neurological dysfunction and new treatments for unconjugated hyperbilirubinemia. In: Neonatology. Springer; 2012, p. 621628.

    • Search Google Scholar
    • Export Citation
  • 48.

    Onishi S, Isobe K, Itoh S, Manabe M, Sasaki K, Fukuzaki R, et al. Metabolism of bilirubin and its photoisomers in newborn infants during phototherapy. J Biochem (Tokyo) 1986; 100(3): 789795.

    • Search Google Scholar
    • Export Citation
  • 49.

    Rehak NN, Cecco SA, Hortin GL. Photolysis of bilirubin in serum specimens exposed to room lighting. Clin Chim Acta Int J Clin Chem 2008; 387(1–2): 181.

    • Search Google Scholar
    • Export Citation
  • 50.

    Hansen TWR, Tommarello S. Effect of phenobarbital on bilirubin metabolism in rat brain. Neonatology 1998; 73(2): 106111.

  • 51.

    Soltys PJ, Mullon C, Langer R. Oral treatment for jaundice using immobilized bilirubin oxidase. Artif Organs 1992; 16(4): 331335.

  • 52.

    Shad MA, Nawaz H, Rehman T, Ikram N, others. Determination of some biochemicals, phytochemicals and antioxidant properties of different parts of Cichorium intybus L.: A comparative study. J Anim Plant Sci 2013; 23(4): 10601066.

    • Search Google Scholar
    • Export Citation
  • 53.

    Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int J Mol Sci 2015; 16(7): 1562515658.

    • Search Google Scholar
    • Export Citation
  • 54.

    Zhang L, Yuan B, Wang H, Gao Y. Therapeutic effect of Agaricus brasiliensis on phenylhydrazine-induced neonatal jaundice in rats. BioMed Res Int 2015; 2015.

    • Search Google Scholar
    • Export Citation
  • 55.

    Abbasi AM, Khan MA, Ahmad M, Zafar M, Khan H, Muhammad N, et al. Medicinal plants used for the treatment of jaundice and hepatitis based on socio-economic documentation. Afr J Biotechnol 2009; 8(8).

    • Search Google Scholar
    • Export Citation
  • 56.

    Patra K, Storfer-Isser A, Siner B, Moore J, Hack M. Adverse events associated with neonatal exchange transfusion in the 1990s. J Pediatr 2004; 144(5): 626631.

    • Search Google Scholar
    • Export Citation
  • 57.

    Badiee Z. Exchange transfusion in neonatal hyperbilirubinaemia: Experience in Isfahan, Iran. Singapore Med J 2007; 48(5): 421.

  • 58.

    Murki S, Kumar P. Blood exchange transfusion for infants with severe neonatal hyperbilirubinemia. In: Seminars in perinatology. Elsevier; 2011. p. 175184.

    • Search Google Scholar
    • Export Citation
  • 59.

    Bambauer R, El-Saadi R, Graf N, Jesberger HJ, Limbach HG, Cordes H. Plasmapheresis in newborns with hyperbilirubinemia. Artif Organs 1992; 16(5): 472476.

    • Search Google Scholar
    • Export Citation
  • 60.

    Keklik M, Sivgin S, Kaynar L, Pala C, Solmaz M, Cetin M, et al. Treatment with plasma exchange may serve benefical effect in patients with severe hyperbilirubinemia: a single center experience. Transfus Apher Sci 2013; 48(3): 323326.

    • Search Google Scholar
    • Export Citation
  • 61.

    Broux B, Lefère L, Deprez P, van Loon G. Plasma exchange as a treatment for hyperbilirubinemia in 2 foals with neonatal isoerythrolysis. J Vet Intern Med 2015; 29(2): 736.

    • Search Google Scholar
    • Export Citation
  • 62.

    Schauer R, Lang T, Zimmermann A, Stangl M, Da Silva L, Schildberg FW, et al. Successful liver transplantation of two brothers with crigler-najjar syndrome type 1 using a single cadaveric organ. Transplantation 2002; 73(1): 6769.

    • Search Google Scholar
    • Export Citation
  • 63.

    Dhawan A, Mitry RR, Hughes RD. Hepatocyte transplantation for liver-based metabolic disorders. J Inherit Metab Dis 2006; 29(2): 431435.

    • Search Google Scholar
    • Export Citation
  • 64.

    Roy-Chowdhury N, Kadakol A, Sappal BS, Thummala NR, Ghosh SS, Lee S-W, et al. Gene therapy for inherited hyperbilirubinemias. J Perinatol 2001; 21(1): S114S118.

    • Search Google Scholar
    • Export Citation
  • 65.

    van Dijk R, Beuers U, Bosma PJ. Gene replacement therapy for genetic hepatocellular jaundice. Clin Rev Allergy Immunol 2015; 48(2–3): 243253.

    • Search Google Scholar
    • Export Citation
  • 66.

    Arnolda G, Chien TD, Hayen A, Hoi NTX, Maningas K, Joe P, et al. A comparison of the effectiveness of three LED phototherapy machines, single-and double-sided, for treating neonatal jaundice in a low resource setting. PLoS One 2018; 13(10): e0205432.

    • Search Google Scholar
    • Export Citation
  • 67.

    Montealegre A, Charpak N, Parra A, Devia C, Coca I, Bertolotto AM. Effectiveness and safety of two phototherapy devices for the humanised management of neonatal jaundice. An Pediatría Engl Ed 2020; 92(2): 79-87.

    • Search Google Scholar
    • Export Citation
  • 68.

    Ergaz Z, Arad I. Intravenous immunoglobulin therapy in neonatal immune hemolytic jaundice. J Perinat Med-Off J WAPM 1993; 21(3): 183187.

    • Search Google Scholar
    • Export Citation
  • 69.

    Alpay F, Sarici SU, Okutan V, Erdem G, Özcan O, Gökçay E. High-dose intravenous immunoglobulin therapy in neonatal immune haemolytic jaundice. Acta Paediatr 1999; 88(2): 216219.

    • Search Google Scholar
    • Export Citation
  • 70.

    Girish G, Chawla D, Agarwal R, Paul VK, Deorari AK. Efficacy of two dose regimes of intravenous immunoglobulin in Rh hemolytic disease of newborn–a randomized controlled trial. Indian Pediatr 2008; 45(8): 653.

    • Search Google Scholar
    • Export Citation
  • 71.

    Demirel G, Akar M, Celik IH, Erdeve O, Uras N, Oguz SS, et al. Single versus multiple dose intravenous immunoglobulin in combination with LED phototherapy in the treatment of ABO hemolytic disease in neonates. Int J Hematol 2011; 93(6): 700703.

    • Search Google Scholar
    • Export Citation
  • 72.

    Schulz S, Wong RJ, Vreman HJ, Strevenson DK. Metalloporphyrins–an update. Front Pharmacol 2012; 3: 68.

  • 73.

    Fujioka K, Kalish F, Wong RJ, Stevenson DK. Inhibition of heme oxygenase activity using a microparticle formulation of zinc protoporphyrin in an acute hemolytic newborn mouse model. Pediatr Res 2016; 79(2): 251257.

    • Search Google Scholar
    • Export Citation
  • 74.

    Maisels MJ, Yang H. Tin-mesoporphyrin in the treatment of refractory hyperbilirubinemia due to Rh incompatibility. J Perinatol 2012; 32(11): 899900.

    • Search Google Scholar
    • Export Citation
  • 75.

    Fallah R, Islami Z, Lotfi SR. Single dose of 50 mg/kg clofibrate in jaundice of healthy term neonates: Randomised clinical trial of efficacy and safety. Indian J Pediatr 2012; 79(2): 194197.

    • Search Google Scholar
    • Export Citation
  • 76.

    Al-Banna SM, Riad AN, Anis SS. The effect of fenofibrate and antioxidant vitamins [D, E and C] in treatment of uncomplicated neonatal hyperbilirubinemia. Ann Neonatol J 2020; 2(1): 3748.

    • Search Google Scholar
    • Export Citation
  • 77.

    Quidde J, Azémar M, Bokemeyer C, Arnold D, Stein A. Treatment approach in patients with hyperbilirubinemia secondary to liver metastases in gastrointestinal malignancies: A case series and review of literature. Ther Adv Med Oncol 2016; 8(3): 144152.

    • Search Google Scholar
    • Export Citation
  • 78.

    Wu R, Feng S, Han M, Caldwell P, Liu S, Zhang J, et al. Yinzhihuang oral liquid combined with phototherapy for neonatal jaundice: A systematic review and meta-analysis of randomized clinical trials. BMC Complement Altern Med 2018; 18(1): 228.

    • Search Google Scholar
    • Export Citation
  • 79.

    Faal G, Masjedi HK, Sharifzadeh G, Kiani Z. Efficacy of zinc sulfate on indirect hyperbilirubinemia in premature infants admitted to neonatal intensive care unit: A double-blind, randomized clinical trial. BMC Pediatr 2020; 20(1): 17.

    • Search Google Scholar
    • Export Citation
  • 80.

    Kassem LM, Abdelrahim M, Naguib HF. Investigating the efficacy and safety of silymarin in management of hyperbilirubinemia in neonatal jaundice. Med Sci 2013; 2(2): 575590.

    • Search Google Scholar
    • Export Citation
  • 81.

    Lei M, Liu T, Li Y, Liu Y, Meng L, Jin C. Effects of massage on newborn infants with jaundice: A meta-analysis. Int J Nurs Sci 2018; 5(1): 8997.

    • Search Google Scholar
    • Export Citation
  • 82.

    Wang L, Shuai T, Wang Y-Y, Cao H. The effect of traditional Chinese medicine washing combined with massage for neonatal jaundice: A meta-analysis. TMR Integr Nurs 2018; 1(2): 3644.

    • Search Google Scholar
    • Export Citation
  • 83.

    Slusher TM, Olusanya BO, Vreman HJ, Wong RJ, Brearley AM, Vaucher YE, et al. Treatment of neonatal jaundice with filtered sunlight in Nigerian neonates: study protocol of a non-inferiority, randomized controlled trial. Trials 2013; 14(1): 446.

    • Search Google Scholar
    • Export Citation
  • 84.

    Negi R, Sorte DY, Gomati B. Effect of white reflecting curtains on neonatal jaundice. Int J Nurs Educ 2015; 7(4): 147152.

  • 85.

    Pratesi S, Di Fabio S, Bresci C, Di Natale C, Bar S, Dani C. Broad-spectrum light versus blue light for phototherapy in neonatal hyperbilirubinemia: A randomized controlled trial. Am J Perinatol 2015; 32(08): 779784.

    • Search Google Scholar
    • Export Citation
  • 86.

    Zeng J, Wang S, Li Y, Li H, Luo Q, Huang Y, et al. Yinzhihuang oral liquid in the treatment of neonatal jaundice: A meta-analysis. Pharm Biol 2017; 55(1): 554559.

    • Search Google Scholar
    • Export Citation
  • 87.

    Beiranvand S, Hosseinabadi R, Firouzi M, Almasian M, Anbari K. Impact of combined oral zinc sulfate and phototherapy on serum bilirubin levels in the term neonates with jaundice. Iran J Neonatol IJN 2018; 9(3): 2025.

    • Search Google Scholar
    • Export Citation
  • 88.

    Boskabadi H, Mollaei MK, Zakerihamidi M, Mobarhan MG, Bagheri F. The effect of exchange transfusion on prooxidant-antioxidant balance in newborns Jaundice. Biomed Res Ther 2018; 5: 21192129.

    • Search Google Scholar
    • Export Citation
  • 89.

    Colbourn T, Mwansambo C. Sunlight phototherapy for neonatal jaundice—time for its day in the sun? Lancet Glob Health 2018; 6(10): e1052e1053.

    • Search Google Scholar
    • Export Citation
  • 90.

    Thakkar D, Verma A, Malgorzata R. G11 Phototherapy at home for the treatment of neonatal jaundice: An innovative, patient centered pilot project. Arch Dis Child 2019; 104(Suppl 2): A5.

    • Search Google Scholar
    • Export Citation
  • 91.

    Abdel-Aziz Ali SM, Mansour Galal S, Sror SM, Hussein O, Abd-El-Haseeb Ahmed A-E-HO, Hamed EA. Efficacy of oral agar in management of indirect hyperbilirubinemia in full-term neonates. J Matern Fetal Neonatal Med 2020; 16.

    • Search Google Scholar
    • Export Citation
  • 92.

    Nizam MA, Alvi AS, Hamdani MM, Lalani AS, Sibtain SA, Bhangar NA. Efficacy of double versus single phototherapy in treatment of neonatal jaundice: A meta-analysis. Eur J Pediatr 2020; 179(6): 865874.

    • Search Google Scholar
    • Export Citation
  • 93.

    Rahideh ST, Saadati A, Rahmati N, Azadeh F, Janani L, Shidfar F. The effect of vitamin C supplementation in the last month of pregnancy on neonatal bilirubin levels; A double-blind randomized clinical trial. Complement Ther Med 2020; 102359.

    • Search Google Scholar
    • Export Citation

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Senior editors

Editor(s)-in-Chief: Rosivall, László

Managing Editor: Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor; Radák, Zsolt

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

  • Benedek, György (Szeged)
  • Benyó, Zoltán (Budapest)
  • Boros, Mihály (Szeged)
  • Chernoch, László (Debrecen)
  • Dank, Magdolna (Budapest)
  • Détári, László (Budapest)
  • Giricz, Zoltán (Budapest)
  • Hamar, János (Budapest)
  • Hantos, Zoltán (Szeged)
  • Hunyady, László (Budapest)
  • Jancsó, Gábor (Szeged)
  • Karádi, Zoltán (Pécs)
  • Palkovits, Miklós (Budapest)
  • Papp, Gyula (Szeged)
  • Pavlik, Gábor (Budapest)
  • Spät, András (Budapest)
  • Szabó, Gyula (Szeged)
  • Szelényi, Zoltán (Pécs)
  • Szollár, Lajos (Budapest)
  • Szücs, Géza (Debrecen)
  • Telegdy, Gyula (Szeged)
  • Toldi, József (Szeged)
  • Tósaki, Árpád (Debrecen)

 

International Editorial Board

  • R. Bauer (Jena)
  • W. Benjelloun (Rabat)
  • A. W. Cowley Jr. (Milwaukee)
  • D. Djuric (Belgrade)
  • C. Fry (London)
  • S. Greenwald (London)
  • O. Hänninen (Kuopio)
  • H. G. Hinghofer-Szalkay (Graz)
  • T. Hortobágyi (Groningen)
  • Gy. Kunos (Richmond)
  • M. Mahmoudian (Tehran)
  • T. Mano (Seki, Gifu)
  • G. Navar (New Orleans)
  • H. Nishino (Nagoya)
  • O. Petersen (Liverpool)
  • U. Pohl (Münich)
  • R. S. Reneman (Maastricht)
  • A. Romanovsky (Phoenix)
  • G. M. Rubanyi (Richmond)
  • T. Sakata (Oita)
  • A. Siddiqui (Karachi)
  • Cs. Szabo (Beverly)
  • E. Vicaut (Paris)
  • N. Westerhof (Amsterdam)
  • L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Physiology International
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Social Science Citation Index

 

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
sumbission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 632 EUR / 788 USD 
Print + online subscription: 736 EUR / 920 USD
Subscription fee 2022 Online subsscription: 644 EUR / 806 USD
Print + online subscription: 752 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Publication
Programme
2021 Volume 108
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 336 8 9
Aug 2021 232 4 5
Sep 2021 193 1 2
Oct 2021 0 0 0