View More View Less
  • 1 Department of Physiology, Jining Medical University, Jining, Shandong, China
  • | 2 School of International Education, Xinxiang Medical University, Xinxiang, Henan, China
  • | 3 Department of Urology Surgery, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
  • | 4 Department of Physiology, Zhengzhou University, Zhengzhou, Henan, China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00



Hypoxia is a pivotal initiator of tumor angiogenesis and growth through the stabilization of hypoxia-inducible factors (HIFs). This study set out to examine the involvement of HIF-1α and HIF-2α in colon cancer and ascertained whether ORAI3 was involved in the pathway.

Materials and methods

Patients and murine models as well as human colorectal adenocarcinoma tumor (CW2) cells were included to examine the levels of ORAI1/3 and HIF-1/2α levels. Calcium imaging was utilized to ascertain the activity of calcium channel. Scratch assay was used to assess the migration capacity of the cells.


Tumors from murine colon cancer xenograft models and patients with colon cancer displayed high ORAI1/3 and HIF-1/2α levels. Hypoxia treatment, mimicking the tumor microenvironment in vitro, increased ORAI1/3 and HIF-1/2α expression as well as store-operated Ca2+ entry (SOCE). Of note is that HIF-1/2α silencing decreased SOCE, and HIF-1/2α overexpression facilitated SOCE. Furthermore, ORAI3 rather than ORAI1 expression was inhibited by HIF-1/2α silencing while increased by ML228. Luciferase assay also confirmed that ORAI3 was elevated in the presence of ML228, indicating the linkage between HIF-1/2α and ORAI3. Additionally, colony-forming potential and cell migration capacity were decreased in siHIF-1α and siHIF-2α as well as siORAI3 cells, and the facilitating effect of ML228 on cell migration and colony-forming potential was also decreased in siORAI3 CW-2 cells, which points out the importance of ORAI3 in HIF1/2α pathway.


Our findings allow to conclude that both HIF-1α and HIF-2α facilitate ORAI3 expression, hence enhancing colon cancer progression.

  • 1.

    Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399408.

  • 2.

    Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9: 67784.

  • 3.

    Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005; 105: 65969.

    • Search Google Scholar
    • Export Citation
  • 4.

    Yang X, Yin H, Zhang Y, Li X, Tong H, Zeng Y, et al. Hypoxia-induced autophagy promotes gemcitabine resistance in human bladder cancer cells through hypoxia-inducible factor 1alpha activation. Int J Oncol 2018; 53: 21524.

    • Search Google Scholar
    • Export Citation
  • 5.

    Cesario JM, Brito RB, Malta CS, Silva CS, Matos YS, Kunz TC, et al. A simple method to induce hypoxia-induced vascular endothelial growth factor-A (VEGF-A) expression in T24 human bladder cancer cells. In Vitro Cell Dev Biol Anim 2017; 53: 27276.

    • Search Google Scholar
    • Export Citation
  • 6.

    Onita T, Ji PG, Xuan JW, Sakai H, Kanetake H, Maxwell PH, et al. Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin Cancer Res 2002; 8: 47180.

    • Search Google Scholar
    • Export Citation
  • 7.

    Prevarskaya N, Ouadid-Ahidouch H, Skryma R, Shuba Y. Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci 2014; 369: 20130097.

    • Search Google Scholar
    • Export Citation
  • 8.

    Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008; 8: 36175.

    • Search Google Scholar
    • Export Citation
  • 9.

    Yan J, Fu Z, Zhang L, Li C. Orai1 is involved in leptin-sensitive cell maturation in mouse dendritic cells. Biochem Biophys Res Commun 2018; 503: 174753.

    • Search Google Scholar
    • Export Citation
  • 10.

    Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG. Orai1 is an essential pore subunit of the CRAC channel. Nature 2006; 443: 2303.

    • Search Google Scholar
    • Export Citation
  • 11.

    Putney JW, Jr. New molecular players in capacitative Ca2+ entry. J Cell Sci 2007; 120: 195965.

  • 12.

    Yan J, Zhao W, Gao C, Liu X, Zhao X, Wei T, et al. Leucine-rich repeat kinase 2 regulates mouse dendritic cell migration by ORAI2. FASEB J 2019; 33: 977584.

    • Search Google Scholar
    • Export Citation
  • 13.

    Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, et al. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 2006; 8: 100310.

    • Search Google Scholar
    • Export Citation
  • 14.

    Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 2009; 15: 12434.

    • Search Google Scholar
    • Export Citation
  • 15.

    Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, et al. Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 2011; 108: 1522530.

    • Search Google Scholar
    • Export Citation
  • 16.

    Flourakis M, Lehen'kyi V, Beck B, Raphael M, Vandenberghe M, Abeele FV, et al. Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis 2010; 1: e75.

    • Search Google Scholar
    • Export Citation
  • 17.

    Enfissi A, Prigent S, Colosetti P, Capiod T. The blocking of capacitative calcium entry by 2-aminoethyl diphenylborate (2-APB) and carboxyamidotriazole (CAI) inhibits proliferation in Hep G2 and Huh-7 human hepatoma cells. Cell Calcium 2004; 36: 45967.

    • Search Google Scholar
    • Export Citation
  • 18.

    Padar S, Bose DD, Livesey JC, Thomas DW. 2-Aminoethoxydiphenyl borate perturbs hormone-sensitive calcium stores and blocks store-operated calcium influx pathways independent of cytoskeletal disruption in human A549 lung cancer cells. Biochem Pharmacol 2005; 69: 117786.

    • Search Google Scholar
    • Export Citation
  • 19.

    Vashisht A, Trebak M, Motiani RK. STIM and Orai proteins as novel targets for cancer therapy. A Review in the theme: cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol 2015; 309: C45769.

    • Search Google Scholar
    • Export Citation
  • 20.

    Gui L, Wang Z, Han J, Ma H, Li Z. High expression of Orai1 enhances cell proliferation and is associated with poor prognosis in human colorectal cancer. Clin Lab 2016; 62: 168998.

    • Search Google Scholar
    • Export Citation
  • 21.

    Motiani RK, Zhang X, Harmon KE, Keller RS, Matrougui K, Bennett JA, et al. Orai3 is an estrogen receptor alpha-regulated Ca(2+) channel that promotes tumorigenesis. FASEB J 2013; 27: 6375.

    • Search Google Scholar
    • Export Citation
  • 22.

    Shuttleworth TJ. Orai3 – the ‘exceptional’ Orai? J Physiol 2012; 590: 24157.

  • 23.

    Tanwar J, Arora S, Motiani RK. Orai3: oncochannel with therapeutic potential. Cell Calcium 2020; 90: 102247.

  • 24.

    Motiani RK, Abdullaev IF, Trebak M. A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 2010; 285: 1917383.

    • Search Google Scholar
    • Export Citation
  • 25.

    Azimi I, Milevskiy MJG, Chalmers SB, Yapa K, Robitaille M, Henry C, et al. ORAI1 and ORAI3 in breast cancer molecular subtypes and the identification of ORAI3 as a hypoxia sensitive gene and a regulator of hypoxia responses. Cancers (Basel) 2019; 11: 208.

    • Search Google Scholar
    • Export Citation
  • 26.

    Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 2003; 17: 2713.

    • Search Google Scholar
    • Export Citation
  • 27.

    Burkitt K, Chun SY, Dang DT, Dang LH. Targeting both HIF-1 and HIF-2 in human colon cancer cells improves tumor response to sunitinib treatment. Mol Cancer Ther 2009; 8: 114856.

    • Search Google Scholar
    • Export Citation
  • 28.

    Yoshimura H, Dhar DK, Kohno H, Kubota H, Fujii T, Ueda S, et al. Prognostic impact of hypoxia-inducible factors 1alpha and 2alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin Cancer Res 2004; 10: 855460.

    • Search Google Scholar
    • Export Citation
  • 29.

    Theriault JR, Perez J, Gilbert S, Palmer M, Schreiber SL, Lindsley CW, et al. Discovery of a small molecule activator of the hypoxia inducible factor pathway. In: Probe reports from the NIH molecular libraries program. Bethesda (MD): National Center for Biotechnology Information (US); 2010.

    • Search Google Scholar
    • Export Citation
  • 30.

    Villalobos C, Hernandez-Morales M, Gutierrez LG, Nunez L. TRPC1 and ORAI1 channels in colon cancer. Cell Calcium 2019; 81: 5966.

  • 31.

    Abdelazeem KNM, Droppova B, Sukkar B, Al-Maghout T, Pelzl L, Zacharopoulou N, et al. Upregulation of Orai1 and STIM1 expression as well as store-operated Ca(2+) entry in ovary carcinoma cells by placental growth factor. Biochem Biophys Res Commun 2019; 512: 46772.

    • Search Google Scholar
    • Export Citation
  • 32.

    Cantonero C, Sanchez-Collado J, Gonzalez-Nunez MA, Salido GM, Lopez JJ, Jardin I, et al. Store-independent Orai1-mediated Ca(2+) entry and cancer. Cell Calcium 2019; 80: 17.

    • Search Google Scholar
    • Export Citation
  • 33.

    Benzerdjeb N, Sevestre H, Ahidouch A, Ouadid-Ahidouch H. Orai3 is a predictive marker of metastasis and survival in resectable lung adenocarcinoma. Oncotarget 2016; 7: 8158897.

    • Search Google Scholar
    • Export Citation
  • 34.

    Vashisht A, Tanwar J, Motiani RK. Regulation of proto-oncogene Orai3 by miR18a/b and miR34a. Cell Calcium 2018; 75: 10111.

  • 35.

    Li Y, Guo B, Xie Q, Ye D, Zhang D, Zhu Y, et al. STIM1 mediates hypoxia-driven hepatocarcinogenesis via interaction with HIF-1. Cell Rep 2015; 12: 38895.

    • Search Google Scholar
    • Export Citation
  • 36.

    Wang J, Xu C, Zheng Q, Yang K, Lai N, Wang T, et al. Orai1, 2, 3 and STIM1 promote store-operated calcium entry in pulmonary arterial smooth muscle cells. Cell Death Discov 2017; 3: 17074.

    • Search Google Scholar
    • Export Citation
  • 37.

    Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 2003; 23: 936174.

    • Search Google Scholar
    • Export Citation
  • 38.

    Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002; 1: 24755.

    • Search Google Scholar
    • Export Citation



The author instruction is available in PDF.

Please, download the file from HERE



Senior editors

Editor(s)-in-Chief: Rosivall, László

Managing Editor: Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor; Radák, Zsolt

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

  • Benedek, György (Szeged)
  • Benyó, Zoltán (Budapest)
  • Boros, Mihály (Szeged)
  • Chernoch, László (Debrecen)
  • Dank, Magdolna (Budapest)
  • Détári, László (Budapest)
  • Giricz, Zoltán (Budapest)
  • Hamar, János (Budapest)
  • Hantos, Zoltán (Szeged)
  • Hunyady, László (Budapest)
  • Jancsó, Gábor (Szeged)
  • Karádi, Zoltán (Pécs)
  • Palkovits, Miklós (Budapest)
  • Papp, Gyula (Szeged)
  • Pavlik, Gábor (Budapest)
  • Spät, András (Budapest)
  • Szabó, Gyula (Szeged)
  • Szelényi, Zoltán (Pécs)
  • Szollár, Lajos (Budapest)
  • Szücs, Géza (Debrecen)
  • Telegdy, Gyula (Szeged)
  • Toldi, József (Szeged)
  • Tósaki, Árpád (Debrecen)


International Editorial Board

  • R. Bauer (Jena)
  • W. Benjelloun (Rabat)
  • A. W. Cowley Jr. (Milwaukee)
  • D. Djuric (Belgrade)
  • C. Fry (London)
  • S. Greenwald (London)
  • O. Hänninen (Kuopio)
  • H. G. Hinghofer-Szalkay (Graz)
  • T. Hortobágyi (Groningen)
  • Gy. Kunos (Richmond)
  • M. Mahmoudian (Tehran)
  • T. Mano (Seki, Gifu)
  • G. Navar (New Orleans)
  • H. Nishino (Nagoya)
  • O. Petersen (Liverpool)
  • U. Pohl (Münich)
  • R. S. Reneman (Maastricht)
  • A. Romanovsky (Phoenix)
  • G. M. Rubanyi (Richmond)
  • T. Sakata (Oita)
  • A. Siddiqui (Karachi)
  • Cs. Szabo (Beverly)
  • E. Vicaut (Paris)
  • N. Westerhof (Amsterdam)
  • L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Physiology International
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • Social Science Citation Index



Total Cites 245
Impact Factor
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Total 42
Total 0
Scimago 29
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
Days from  172
to acceptance  
Days from  106
to publication  

Total Cites
Impact Factor 1,410
Impact Factor
Journal Self Cites
5 Year
Impact Factor
Article Influence
% Articles
Citable Items
Journal Rank
Scite Score
Scite Score Rank
Physiology (medical) 73/99 (Q3)


Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 632 EUR / 788 USD 
Print + online subscription: 736 EUR / 920 USD
Subscription fee 2022 Online subsscription: 644 EUR / 806 USD
Print + online subscription: 752 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
2006 (1950)
2021 Volume 108
per Year
per Year
Founder Magyar Tudományos Akadémia
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 138 7 8
Aug 2021 71 3 5
Sep 2021 51 1 1
Oct 2021 0 0 0