Authors:
Katsuyuki Tokinoya Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo,192-0397, Japan
Japan Society for the Promotion of Science, Tokyo 102-0083, Japan

Search for other papers by Katsuyuki Tokinoya in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4773-9991
,
Seiko Ono Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

Search for other papers by Seiko Ono in
Current site
Google Scholar
PubMed
Close
,
Kai Aoki Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan

Search for other papers by Kai Aoki in
Current site
Google Scholar
PubMed
Close
,
Koki Yanazawa Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

Search for other papers by Koki Yanazawa in
Current site
Google Scholar
PubMed
Close
,
Yasuhiro Shishikura Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

Search for other papers by Yasuhiro Shishikura in
Current site
Google Scholar
PubMed
Close
,
Takehito Sugasawa Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan

Search for other papers by Takehito Sugasawa in
Current site
Google Scholar
PubMed
Close
, and
Kazuhiro Takekoshi Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan

Search for other papers by Kazuhiro Takekoshi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Introduction

Exercise training is beneficial for reducing obesity. In particular, exercise training can lower the catecholamine concentration in circulation. Renalase, whose expression was first confirmed in the kidneys, is a physiologically active substance that decomposes circulating catecholamines; additionally, it has been reported to be present in the skeletal muscles. The aim of this study was to clarify the expression of renalase in the skeletal muscles and kidneys after high-intensity exercise training in obese mice.

Material and methods

The mice were divided into four groups: normal diet and sedentary, normal diet and exercise training, high-fat diet and sedentary, and high-fat diet and exercise training, and the test was performed for 8 weeks.

Results

Body weight and skeletal muscle wet weight were reduced by high-fat diet intake but were rescued by training. Skeletal muscle renalase gene expression was significantly increased by exercise training. However, in the kidneys the gene expression of renalase was significantly increased by high-fat diet intake and exercise training. No significant changes were observed in the gene expression of catecholamine-degrading enzymes, catechol-O-methyltransferase and monoamine oxidase A and B.

Conclusion

We demonstrated that exercise training increased the gene expression of renalase in the skeletal muscles and kidneys, thus lowering circulating catecholamine levels. This may lead to amelioration of obesity as catecholamines are lipolytic.

  • 1.

    Wang F, Huang B, Li J, Liu L, Wang N. Renalase might be associated with hypertension and insulin resistance in Type 2 diabetes. Ren Fail 2014; 36: 5526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    De Oliveira Sá G, dos Santos Neves V, de Oliveira Fraga SR, Souza-Mello V, Barbosa-da-Silva S. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets. Life Sci 2017; 189: 817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hafstad AD, Lund J, Hadler-Olsen E, Höper AC, Larsen TS, Aasum E. High- and moderate-Intensity training normalizes ventricular function and mechanoenergetics in mice with diet-Induced obesity. Diabetes 2013; 62: 228794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Rogers PJ, Tyce GM, Weinshilboum RM, O’Connor DT, Bailey KR, Bove AA. Catecholamine metabolic pathways and exercise training: plasma and urine catecholamines, metabolic enzymes, and chromogranin-A. Circulation 1991; 84: 234656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Winder WW, Hagberg JM, Hickson RC, Ehsani AA, McLane JA. Time course of sympathoadrenal adaptation to endurance exercise training in man. J Appl Physiol Respir Environ Exerc Physiol 1987; 45: 3704.

    • Search Google Scholar
    • Export Citation
  • 6.

    Illi A, Sundberg S, Ojala-Karlsson P, Scheinin M, Gordin A. Simultaneous inhibition of catechol-O-methyltransferase and monoamine oxidase A: effects on hemodynamics and catecholamine metabolism in healthy volunteers. Clin Pharmacol Ther 1996; 59: 4507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Desir GV, Tang L, Wang P, Li G, Sampaio-Maia B, Quelhas-Santos J, et al. Renalase lowers ambulatory blood pressure by metabolizing circulating adrenaline. J Am Heart Assoc 2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wu Y, Xu J, Velazquez H, Wang P, Li G, Liu D, et al. Renalase deficiency aggravates ischemic myocardial damage. Kidney Int 2011; 79: 85360.

  • 9.

    Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, et al. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest 2005; 115: 127580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Yoshida Y, Sugasawa T, Hoshino M, Tokinoya K, Ishikura K, Ohmori H, et al. Transient changes in serum renalase concentration during long-distance running: the case of an amateur runner under continuous training. J Phys Fit Sport Med 2017; 6: 15966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zbroch E, Musialowska D, Koc-Zorawska E, Malyszko J. Age influence on renalase and catecholamines concentration in hypertensive patients, including maintained dialysis. Clin Interv Aging 2016; 11: 154550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Tokinoya K, Yoshida Y, Sugasawa T, Takekoshi K. Moderate‐intensity exercise increases renalase levels in the blood and skeletal muscle of rats. FEBS Open Bio 2020; 18.

    • Search Google Scholar
    • Export Citation
  • 13.

    Yoshida Y, Sugasawa T, Tokinoya K, Namba S, Takekoshi K. Epinephrine upregulates renalase expression in cultured C2C12 muscle cells. Int J Anal Bio-Sci. 2017; 5: 615.

    • Search Google Scholar
    • Export Citation
  • 14.

    Sonawane PJ, Gupta V, Sasi BK, Kalyani A, Natarajan B, Khan AA, et al. Transcriptional regulation of the novel monoamine oxidase renalase: crucial roles of transcription factors Sp1, STAT3, and ZBP89. Biochemistry 2014; 53(44): 687892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Tokinoya K, Shiromoto J, Sugasawa T, Yoshida Y, Aoki K, Nakagawa Y, et al. Influence of acute exercise on renalase and its regulatory mechanism. Life Sci 2018; 210: 23542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Okamoto M, Yamamura Y, Liu Y-F, Min-Chul L, Matsui T, Shima T, et al. Hormetic effects by exercise on hippocampal neurogenesis with glucocorticoid signaling. Brain Plast 2015; 1: 14958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sieck GC, Fournier M. Diaphragm motor unit recruitment during ventilatory and nonventilatory behaviors. J Appl Physiol 1989; 66: 253945.

  • 18.

    Czarkowska-Paczek B, Zendzian-Piotrowska M, Gala K, Sobol M, Paczek L. Exercise differentially regulates renalase expression in skeletal muscle and kidney. Tohoku J Exp Med 2013; 231: 3219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sport Med 2008; 38: 40123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Fantin F, Giani A, Zoico E, Rossi AP, Mazzali G, Zamboni M. Weight loss and hypertension in obese subjects. Nutrients 2019.

  • 21.

    Katch VL, McArdle WD, Katch FI. Essentials of exercise physiology. In: The cardiovascular System and exercise. 4th ed.; 2011. p. 30611.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 78 4 0
Jan 2024 38 3 0
Feb 2024 150 1 0
Mar 2024 35 1 0
Apr 2024 30 0 0
May 2024 18 0 0
Jun 2024 0 0 0