View More View Less
  • 1 Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, , Shanghai 201203, , China
  • | 2 Department of Rehabilitation, Changzheng Hospital, The Second Military Medical University, , Shanghai 200003, , China
  • | 3 Shanghai Zhulian Intelligent Technology CO., LTD, , Shanghai 201323, , China
  • | 4 Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, , China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Abstract

Aim

Limited investigations on metabolic responses to exercise training in female adolescent volleyball athletes exist. The aim of this study was to obtain serum and urine metabolite markers in female adolescent volleyball athletes within 2-week strength-endurance training using a metabolomics approach coupled with biochemical analysis, which would be potential biomarkers for evaluating the physiological state of athletes.

Methods

Twelve female adolescent volleyball athletes were recruited for 2-week strength-endurance training. Differential serum and urine metabolic profiles between the pre- and post-training group were obtained on gas chromatography coupled to mass spectrometry (GC-MS) and data subsequently underwent orthogonal partial least-squares analysis (OPLS).

Results

Strength-endurance training exerted a significant influence on the athletes' serum and urine metabolic profiles. The changed metabolites were primarily involved in energy metabolism, lipid metabolism and amino acids metabolism. Results support the hypothesis that female athletes displayed an increased propensity to oxidize lipids as the major energy source. Exposure to strength-endurance training also led to a significant increase in cortisol, but a decrease in testosterone, indicating disordered hormone adjustment. Exercise-induced oxidative stress occurred, as was evidenced by the decrease in reduced glutathione, and increases in blood malondialdehyde and oxidized glutathione. Since the muscle damage markers creatine kinase and lactate dehydrogenase did not show significant changes, the training might not cause cell membrane damage and the athletes did not cross the adaptive injury level.

Conclusion

By measurement of endogenous metabolites, the metabolomics study has the potential to reveal the global physiological changes in response to exercise training.

  • 1.

    Freitas VH, Nakamura FY, Miloski B, Samulski D, Bara-Filho MG. Sensitivity of physiological and psychological markers to training load intensification in volleyball players. J Sports Sci Med 2014; 13: 5719.

    • Search Google Scholar
    • Export Citation
  • 2.

    Sheppard JM, Newton RU. Long-term training adaptations in elite male volleyball players. J Strength Cond Res 2012; 26: 21804.

  • 3.

    Margonis K, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Douroudos I, Chatzinikolaou A, et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med 2007; 43: 90110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Radojewski M, Podgórski T, Pospieszna B, Kryściak J, Śliwicka E, Karolkiewicz J. Skeletal muscle cell damage indicators in volleyball players after the competitive phase of the annual training cycle. J Hum Kinet 2018; 62: 8190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Pereira A, Costa AM, Santos P, Figueiredo T, João PV. Training strategy of explosive strength in young female volleyball players. Medicina (Kaunas) 2015; 51: 12631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Melrose DR, Spaniol FJ, Bohling ME, Bonnette RA. Physiological and performance characteristics of adolescent club volleyball players. J Strength Cond Res 2007; 21: 4816.

    • Search Google Scholar
    • Export Citation
  • 7.

    Gao X, Guo B, Yang L, Liu J, Zhang X, Qin X, et al. Selection and dynamic metabolic response of rat biomarkers by metabonomics and multivariate statistical analysis combined with GC–MS. Pharmacol Biochem Behav 2014; 117: 8591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Baharum SN, Azizan KA. Metabolomics in systems biology. Adv Exp Med Biol 2018; 1102: 5168.

  • 9.

    Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner T, Cameron-Smith D: Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab 2014; 307: E53952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Yan B, Wang G, Lu H, Huang X, Liu Y, Zha W, et al. Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. J Appl Physiol (1985) 2009; 106: 5318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Davison G, Vinaixa M, McGovern R, Beltran A, Novials A, Correig X, et al. Metabolomic response to acute hypoxic exercise and recovery in adult males. Front Physiol 2018; 9: 1682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Jang H, Lee JD, Jeon HS, Kim AR, Kim S, Lee HS, et al. Metabolic profiling of eccentric exercise-induced muscle damage in human urine. Toxicol Res 2018; 34: 199210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Miao X, Xiao B, Shui S, Yang J, Huang R, Dong J. Metabolomics analysis of serum reveals the effect of Danggui Buxue Tang on fatigued mice induced by exhausting physical exercise. J Pharm Biomed Anal 2018; 151: 3019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Stander Z, Luies L, Mienie LJ, Keane KM, Howatson G, Clifford T, et al. The altered human serum metabolome induced by a marathon. Metabolomics 2018; 14: 150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Zhou W, Zeng G, Lyu C, Kou F, Zhang S, Wei H. The effect of exhaustive exercise on plasma metabolic profiles of male and female rats. J Sports Sci Med 2019; 18: 25363.

    • Search Google Scholar
    • Export Citation
  • 16.

    Künstlinger U, Ludwig HG, Stegemann J. Metabolic changes during volleyball matches. Int J Sports Med 1987; 8: 31522.

  • 17.

    Riebe D, Ehrman JK, Liguori G, Magal M, editors. ACSM's guidelines for exercise testing and prescription. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2016.

    • Search Google Scholar
    • Export Citation
  • 18.

    Azizbeigi K, Azarbayjani MA, Atashak S, Stannard SR. Effect of moderate and high resistance training intensity on indices of inflammatory and oxidative stress. Res Sports Med 2015; 23: 7387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Liao W, Wei H, Wang X, Qiu Y, Gou X, Zhang X, et al. Metabonomic variations associated with AOM-induced precancerous colorectal lesions and resveratrol treatment. J Proteome Res 2012; 11: 343648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Dai J, Sun S, Cao J, Zhao Y, Cao H, Zheng N, et al. Similar connotation in chronic hepatitis B and nonalcoholic fatty liver patients with dampness-heat syndrome. Evid Based Complement Alternat Med 2013; 2013: 793820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Wiklund S, Johansson E, Sjöström L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 2008; 80: 11522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res 2009; 8: 484450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Pang Z, Wang G, Wang C, Zhang W, Liu J, Wang F. Serum metabolomics analysis of asthma in different inflammatory phenotypes: a cross-sectional study in northeast China. Biomed Res Int 2018; 2018. Article ID 2860521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hsu WH, Lee CH, Chao YM, Kuo CH, Ku WC, Chen CC, et al. ASIC3-dependent metabolomics profiling of serum and urine in a mouse model of fibromyalgia. Sci Rep 2019; 9. Article ID 12123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Elloumi M, Maso F, Michaux O, Robert A, Lac G. Behaviour of saliva cortisol [C], testosterone [T] and the T/C ratio during a rugby match and during the post-competition recovery days. Eur J Appl Physiol 2003; 90: 238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lac G, Maso F. Biological markers for the follow-up of athletes throughout the training season. Pathol Biol (Paris) 2004; 52: 439.

  • 27.

    Haralambie G, Berg A. Serum urea and amino nitrogen changes with exercise duration. Eur J Appl Physiol Occup Physiol 1976; 36: 3948.

  • 28.

    Lemon PW, Mullin JP. Effect of initial muscle glycogen levels on protein catabolism during exercise. J Appl Physiol Respir Environ Exerc Physiol 1980; 48: 6249.

    • Search Google Scholar
    • Export Citation
  • 29.

    Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol 2016; 594: 508192.

  • 30.

    Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2006; 8: 186579.

  • 31.

    Seifi-Skishahr F, Damirchi A, Farjaminezhad M, Babaei P. Physical training status determines oxidative stress and redox changes in response to an acute aerobic exercise. Biochem Res Int 2016; 2016. Article ID 3757623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kanter MM, Lesmes GR, Kaminsky LA, Ham-Saeger JL, Nequin ND. Serum creatine kinase and lactate dehydrogenase changes following an eighty kilometer race. Eur J Appl Physiol Occup Physiol 1988; 57: 603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Friedlander AL, Casazza GA, Horning MA, Buddinger TF, Brooks GA. Effects of exercise intensity and training on lipid metabolism in young women. Am J Physiol 1998; 275: E85363.

    • Search Google Scholar
    • Export Citation
  • 34.

    Holloszy JO, Kohrt WM, Hansen PA. The regulation of carbohydrate and fat metabolism during and after exercise. Front Biosci 1998; 3: D1011127.

  • 35.

    Henderson GC, Fattor JA, Horning MA, Faghihnia N, Johnson ML, Mau TL, et al. Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J Physiol 2007; 584: 96381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    She P, Zhou Y, Zhang Z, Griffin K, Gowda K, Lynch CJ. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance. J Appl Physiol (1985) 2010; 108: 9419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Kume S, Yamato M, Tamura Y, Jin G, Nakano M, Miyashige Y, et al. Potential biomarkers of fatigue identified by plasma metabolome analysis in rats. PLoS One 2015; 10. Article ID e0120106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Kumar V, Atherton P, Smith K, Rennie MJ. Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol (1985) 2009; 106: 202639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    D'Eon T, Braun B. The roles of estrogen and progesterone in regulating carbohydrate and fat utilization at rest and during exercise. J Womens Health Gend Based Med 2002; 11: 22537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ruby BC, Robergs RA. Gender differences in substrate utilisation during exercise. Sports Med 1994; 17: 393410.

  • 41.

    Ji LL. Exercise-induced modulation of antioxidant defense. Ann N Y Acad Sci 2002; 959: 8292.

  • 42.

    Tapiero H, Mathé G, Couvreur P, Tew KD. II. Glutamine and glutamate. Biomed Pharmacother 2002; 56: 44657.

  • 43.

    Gomes EC, Silva AN, de Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev 2012; 2012. Article ID 756132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Liao P, He Q, Zhou X, Ma K, Wen J, Chen H, et al. Repetitive bouts of exhaustive exercise induces a systemic inflammatory response and multi-organ damage in rats. Front Physiol 2020; 11. Article 685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Pepe H, Balci SS, Revan S, Akalin PP, Kurtoğlu F. Comparison of oxidative stress and antioxidant capacity before and after running exercises in both sexes. Gend Med 2008; 6: 58795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Horton TJ, Miller EK, Glueck D, Tench K. No effect of menstrual cycle phase on glucose kinetics and fuel oxidation during moderate-intensity exercise. Am J Physiol Endocrinol Metab 2002; 282: E75262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Chung SC, Goldfarb AH, Jamurtas AZ, Hegde SS, Lee J. Effect of exercise during the follicular and luteal phases on indices of oxidative stress in healthy women. Med Sci Sports Exerc 1999; 31: 40913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Giustarini D, Dalle-Donne I, Milzani A, Fanti P, Rossi R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat Protoc 2013; 8: 16609.

    • Crossref
    • Search Google Scholar
    • Export Citation

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Physiology International
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Social Science Citation Index

 

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 632 EUR / 788 USD 
Print + online subscription: 736 EUR / 920 USD
Subscription fee 2022 Online subsscription: 644 EUR / 806 USD
Print + online subscription: 752 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Publication
Programme
2021 Volume 108
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 115 6 7
Aug 2021 113 4 5
Sep 2021 123 1 2
Oct 2021 132 0 0
Nov 2021 175 0 0
Dec 2021 9 0 0