Authors:
Lakshmi N Kannan Department of Physical Therapy, The University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Lakshmi N Kannan in
Current site
Google Scholar
PubMed
Close
and
Tanvi S Bhatt Department of Physical Therapy, The University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Tanvi S Bhatt in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6417-1018
Restricted access

Abstract

Background

Older adults with mild cognitive impairment (OAwMCI) present subtle balance and gait deficits along with subjective memory decline. Although these presentations might not affect activities of daily living (ADLs), they attribute to a two-folded increase in falls. While changes occurring in volitional balance control during ADLs have been extensively examined among OAwMCI, reactive balance control, required to recover from external perturbations, has received little attention. Therefore, this study examined reactive balance control in OAwMCI compared to their healthy counterparts.

Methods

Fifteen older adults with mild cognitive impairment (OAwMCI), fifteen cognitively intact older adults (CIOA) (>55 years), and fifteen young adults (18–30 years) were exposed to stance perturbations at three different intensities. Behavioral outcomes postural COM state stability, step length, step initiation, and step execution were computed.

Results

Postural COM state stability was the lowest in OAwMCI compared to CIOA and young adults, and it deteriorated at higher perturbation intensities (P < 0.001). Step length was the lowest among OAwMCI and was significantly different from young adults (P < 0.001) but not from CIOA. Unlike OAwMCI, CIOA and young adults increased their step length at higher perturbation intensities (P < 0.001). OAwMCI showed longer recovery step initiation times and shorter execution times compared to CIOA and young adults at higher perturbation intensities (P < 0.001).

Conclusion

OAwMCI exhibit exacerbated reactive instability and are unable to modulate their responses as the threat to balance control altered. Thus, they are at a significantly higher risk of falls than their healthy counterparts.

  • 1.

    Petersen RC , Smith GE , Waring SC , Ivnik RJ , Kokmen E , Tangelos EG . Aging, memory, and mild cognitive impairment. Int Psychogeriatr 1997; 9(S1): 659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Plassman BL , Langa KM , Fisher GG , Heeringa SG , Weir DR , Ofstedal MB , et al. Prevalence of cognitive impairment without dementia in the United States. Ann Intern Med 2008; 148(6): 42734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Villemagne VL , Burnham S , Bourgeat P , Brown B , Ellis KA , Salvado O , et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol 2013; 12(4): 35767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kallin K , Gustafson Y , Sandman P-O , Karlsson S . Factors associated with falls among older, cognitively impaired people in geriatric care settings: a population-based study. Am J Geriatr Psychiatry 2005; 13(6): 5019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Shaw FE . Falls in cognitive impairment and dementia. Clin Geriatr Med 2002; 18(2): 15973.

  • 6.

    Bárrios H , Narciso S , Guerreiro M , Maroco J , Logsdon R , de Mendonça A . Quality of life in patients with mild cognitive impairment. Aging Ment Health 2013; 17(3): 28792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Doi T , Shimada H , Makizako H , Tsutsumimoto K , Hotta R , Nakakubo S , et al. Mild cognitive impairment, slow gait, and risk of disability: a prospective study. J Am Med Directors Assoc 2015; 16(12): 10826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Petersen RC . Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256(3): 18394.

  • 9.

    Maki BE , McIlroy WE . The role of limb movements in maintaining upright stance: the “change-in-support” strategy. Phys Ther 1997; 77(5): 488507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pai Y-C , Bhatt TS . Repeated-slip training: an emerging paradigm for prevention of slip-related falls among older adults. Phys Ther 2007; 87(11): 147891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pieruccini-Faria F , Sarquis-Adamson Y , Montero-Odasso M . Mild cognitive impairment affects obstacle negotiation in older adults: results from “Gait and Brain Study”. Gerontology 2019; 65(2): 16473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Leandri M , Cammisuli S , Cammarata S , Baratto L , Campbell J , Simonini M , et al. Balance features in Alzheimer's disease and amnestic mild cognitive impairment. J Alzheimer's Dis 2009; 16(1): 11320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Shin BM , Han SJ , Jung JH , Kim JE , Fregni F . Effect of mild cognitive impairment on balance. J Neurol Sci 2011; 305(1–2): 1215.

  • 14.

    Mansfield A , Peters AL , Liu BA , Maki BE . Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial. Phys Ther 2010; 90(4): 47691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Tangen GG , Engedal K , Bergland A , Moger TA , Mengshoel AM . Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease. Phys Ther 2014; 94(8): 112334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Burleigh A , Horak F . Influence of instruction, prediction, and afferent sensory information on the postural organization of step initiation. J Neurophysiol 1996; 75(4): 161928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Timmann D , Horak F . Perturbed step initiation in cerebellar subjects 1. Modifications of postural responses. Exp Brain Res 1998; 119(1): 7384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Timmann D , Horak F . Perturbed step initiation in cerebellar subjects: 2. Modification of anticipatory postural adjustments. Exp Brain Res 2001; 141(1): 11020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Patel PJ , Bhatt T . Does aging with a cortical lesion increase fall-risk: examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations. Neuroscience 2016; 333: 25263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Lin S-I , Woollacott MH . Postural muscle responses following changing balance threats in young, stable older, and unstable older adults. J Mot Behav 2002; 34(1): 3744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Moreland JD , Richardson JA , Goldsmith CH , Clase CM . Muscle weakness and falls in older adults: a systematic review and meta‐analysis. J Am Geriatr Soc 2004; 52(7): 11219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bastian AJ . Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol 2008; 21(6): 628.

  • 23.

    Wang Y , Wang S , Lee A , Pai Y-C , Bhatt T . Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol. Exp Brain Res 2019; 237(9): 230517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Thompson JD , Plummer P , Franz JR . Age and falls history effects on antagonist leg muscle coactivation during walking with balance perturbations. Clin Biomech 2018; 59: 94100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Dickerson B , Salat D , Greve D , Chua E , Rand-Giovannetti E , Rentz D , et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005; 65(3): 40411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Wang L , Goldstein FC , Veledar E , Levey AI , Lah JJ , Meltzer CC , et al. Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging. Am J Neuroradiology 2009; 30(5): 8939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Zhang Y , Schuff N , Camacho M , Chao LL , Fletcher TP , Yaffe K , et al. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements. PloS One 2013; 8(6): e66367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Nasreddine ZS , Phillips NA , Bédirian V , Charbonneau S , Whitehead V , Collin I , et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53(4): 6959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hans D , Schott A , Meunier P . Ultrasonic assessment of bone: a review. The Eur J Med 1993; 2(3): 15763.

  • 30.

    Zagzebski JA , Rossman PJ , Mesina C , Mazess RB , Madsen EL . Ultrasound transmission measurements through the os calcis. Calcified Tissue Int 1991; 49(2): 10711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lajoie Y , Gallagher S . Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch Gerontol Geriatr 2004; 38(1): 1126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Yang F , Bhatt T , Pai Y-C . Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. J Biomech 2009; 42(12): 19038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Pai Y-C , Iqbal K . Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability in the presence of slipping or forced sliding? J Biomech 1999; 32(8): 77986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    McMahon TA . Muscles, reflexes, and locomotion. Princeton University Press; 1984.

  • 35.

    Smith JA , Fisher BE . Anticipatory postural adjustments and spatial organization of motor cortex: evidence of adaptive compensations in healthy older adults. J Neurophysiol 2018; 120(6): 2796805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Hsiao-Wecksler ET . Biomechanical and age-related differences in balance recovery using the tether-release method. J Electromyogr Kinesiol 2008; 18(2): 17987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Welch TD , Ting LH . A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity. J Neurophysiol 2009; 101(6): 3294309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Mahoney JR , Wang C , Dumas K , Holtzer R . Visual-somatosensory integration in aging: does stimulus location really matter? Vis Neurosci 2014; 31(3): 275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Mahoney JR , Verghese J . Does cognitive impairment influence visual-somatosensory integration and mobility in older adults? J Gerontol Ser A 2020; 75(3): 5818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Jacobs J , Horak F . Cortical control of postural responses. J Neural Transm 2007; 114(10): 1339.

  • 41.

    Brandt T , Schautzer F , Hamilton DA , Brüning R , Markowitsch HJ , Kalla R , et al. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 2005; 128(11): 273241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Hufner K , Stephan T , Hamilton D , Kalla R , Glasauer S , Strupp M , et al. Gray-matter atrophy after chronic complete unilateral vestibular deafferentation. Ann New York Acad Sci 2009; 1164(1): 3835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Micarelli A , Viziano A , Della-Morte D , Augimeri I , Alessandrini M . Degree of functional impairment associated with vestibular hypofunction among older adults with cognitive decline. Otol Neurotol 2018; 39(5): e392400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Ventre-Dominey J . Vestibular function in the temporal and parietal cortex: distinct velocity and inertial processing pathways. Front Integr Neurosci 2014; 8: 53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.356
SJR Q rank Q2

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge Effective from 1st Apr 2025:
600 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 72 0 0
Dec 2024 110 0 0
Jan 2025 167 0 0
Feb 2025 149 0 0
Mar 2025 152 0 0
Apr 2025 59 0 0
May 2025 0 0 0