Authors:
Fereshteh Ahmadabadi Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran

Search for other papers by Fereshteh Ahmadabadi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5618-0926
,
Hossein Nakhaei Health Promotion Research Centre, Zahedan University of Medical Sciences, Zahedan, Iran

Search for other papers by Hossein Nakhaei in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7282-6061
,
Mehdi Mogharnasi Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran

Search for other papers by Mehdi Mogharnasi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9351-5948
, and
Chun-Jung Huang Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, United States

Search for other papers by Chun-Jung Huang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0425-8311
Restricted access

Abstract

The perturbation of adipokinetic hormones, such as irisin, chemerin, and asprosin has been reported to participate in pathological conditions (e.g., insulin resistance) and chronic inflammation. However, exercise training has been long established as an effective intervention for prevention and treatment of these chronic and metabolic diseases. This study was to examine the effects of aerobic continuous training (ACT) and aerobic interval training (AIT) on irisin and chemerin levels of liver tissue (LT) and visceral adipose tissue (VAT), circulating asprosin, and their relationships with cardiometabolic risk factors in rats with metabolic syndrome (MetS). Thirty-two male Wistar rats were randomly divided into four equal groups: normal control (N-Ctr), control (Ctr-MetS), ACT, and AIT. After familiarization, rats with exercise intervention performed either ACT or AIT five times a week over eight weeks. The level of irisin in both ACT and AIT groups was higher than the Ctr-MetS group in LT and VAT, with a greater improvement of LT level observed in AIT vs. ACT groups. Furthermore, the level of chemerin in LT and VAT was lower in both ACT and AIT groups than the Ctr-MetS group, whereas only AIT group exhibited a reduction of serum asprosin when compared to ACT and Ctr-MetS, along with the improvements of cardiometabolic markers, such as HOMA-IR and lipid profile. These findings may support the efficiency and effectiveness of AIT intervention in the modulation of these novel metabolic hormones and cardiometabolic risk factors for reduced risk of metabolic syndrome.

  • 1.

    Mansyur MA , Bakri S , Patellongi IJ , Rahman IA . The association between metabolic syndrome components, low-grade systemic inflammation and insulin resistance in non-diabetic Indonesian adolescent male. Clin Nutr ESPEN 2020; 35: 6974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Kumari R , Kumar S , Kant R . An update on metabolic syndrome: metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab Syndr Clin Res Rev 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Balistreri CR , Caruso C , Candore G . The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm 2010; 2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Wang Y , Qu H , Xiong X , Qiu Y , Liao Y , Chen Y , et al.. Plasma asprosin concentrations are increased in individuals with glucose dysregulation and correlated with insulin resistance and first-phase insulin secretion. Mediators Inflamm 2018; 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Arhire LI , Mihalache L , Covasa M . Irisin: a Hope in understanding and managing obesity and metabolic syndrome. Front Endocrinol 2019; 10.

  • 6.

    Lee M-W , Lee M , Oh K-J . Adipose tissue-derived signatures for obesity and type 2 diabetes: adipokines, batokines and microRNAs. J Clin Med 2019; 8(6): 854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Yuksel Ozgor B , Demiral I , Zeybek U , Celik F , Buyru F , Yeh J , et al.. Effects of irisin compared with exercise on specific metabolic and obesity parameters in female mice with obesity. Metab Syndr Relat Disord 2020; 18(3): 141145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Shi J , Fan J , Su Q , Yang Z . Cytokines and abnormal glucose and lipid metabolism. Front Endocrinol (Lausanne) 2019; 10: 703.

  • 9.

    Mo L , Shen J , Liu Q , Zhang Y , Kuang J , Pu S , et al.. Irisin is regulated by CAR in liver and is a mediator of hepatic glucose and lipid metabolism. Mol Endocrinol 2016; 30(5): 533542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Xiong X-Q , Geng Z , Zhou B , Zhang F , Han Y , Zhou Y-B , et al.. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism 2018; 83: 3141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Boström P , Wu J , Jedrychowski MP , Korde A , Ye L , Lo JC , et al.. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481(7382): 463468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ozcan S , Ulker N , Bulmus O , Yardimci A , Ozcan M , Canpolat S . The modulatory effects of irisin on asprosin, leptin, glucose levels and lipid profile in healthy and obese male and female rats. Arch Physiol Biochem 2020: 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Wang Y , Jin X , Qiao L , Li Y , Yang R , Wang M , et al.. Aldosterone upregulates chemerin via chemokinelike receptor 1-Rho-ROCK-JNK signaling in cardiac fibroblasts. Int J Clin Exp Med 2017; 10(4): 67566762.

    • Search Google Scholar
    • Export Citation
  • 14.

    Ernst MC , Issa M , Goralski KB , Sinal CJ . Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 2010; 151(5): 19982007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Balaban YA , Yilmaz N , Kalayci M , Unal M , Turhan T . Irisin and chemerin levels IN patients with type 2 diabetes mellitus. Acta Endocrinologica (Bucharest) 2019; 15(4): 442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Dąbrowski K , Kierach R , Grabarek BO , Boroń D , Kukla M . Effect of ursodeoxycholic acid therapy due to pregnant intrahepatic cholestasis on chemerin and irisin levels. Dermatol Ther 2020; 33(2): e13272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Karczewska-Kupczewska M , Nikołajuk A , Stefanowicz M , Matulewicz N , Kowalska I , Strączkowski M . Serum and adipose tissue chemerin is differentially related to insulin sensitivity. Endocr Connections 2020; 9(5): 360369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Romere C , Duerrschmid C , Bournat J , Constable P , Jain M , Xia F , et al.. Asprosin, a fasting-induced glucogenic protein hormone. Cell 2016; 165(3): 566579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Schumann U , Qiu S , Enders K , Bosnyák E , Laszlo R , Machus K , Trájer E , Jaganathan S , Zügel M , Jürgen M , Steinacker . Asprosin, A newly identified fasting-induced hormone is not elevated in obesity and is insensitive to acute exercise: 3592 board# 39 June 3 800 AM-930 AM. Med Sci Sports Exerc 2017; 49(5S): 1023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Long W , Xie X , Du C , Zhao Y , Zhang C , Zhan D , et al.. Decreased circulating levels of asprosin in obese children. Horm Res paediatrics 2019; 91(4): 271277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Yuan M , Li W , Zhu Y , Yu B , Wu J . Asprosin: a novel player in metabolic diseases. Front Endocrinol 2020; 11: 64.

  • 22.

    Saghebjoo M , Nezamdoost Z , Ahmadabadi F , Saffari I , Hamidi A . The effect of 12 weeks of aerobic training on serum levels high sensitivity C-reactive protein, tumor necrosis factor-alpha, lipid profile and anthropometric characteristics in middle-age women patients with type 2 diabetes. Diabetes Metab Syndr Clin Res Rev 2018; 12(2): 163168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Tjønna AE , Ramos JS , Pressler A , Halle M , Jungbluth K , Ermacora E , et al.. EX-MET study: exercise in prevention on of metabolic syndrome–a randomized multicenter trial: rational and design. BMC public health 2018; 18(1): 437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ostman C , Smart N , Morcos D , Duller A , Ridley W , Jewiss D . The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc diabetology 2017; 16(1): 110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Caponi PW , Lehnen AM , Pinto GH , Borges J , Markoski M , Machado UF , et al.. Aerobic exercise training induces metabolic benefits in rats with metabolic syndrome independent of dietary changes. Clinics 2013; 68(7): 10101017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Ko JR , Seo DY , Kim TN , Park SH , Kwak H-B , Ko KS , et al.. Aerobic exercise training decreases hepatic asprosin in diabetic rats. J Clin Med 2019; 8(5): 666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Bayat M , Alaee M , Akbari A , Sadegh M , Latifi SA , Parastesh M , et al.. A comparative study of the antidiabetic effect of two training protocols in streptozotocin-nicotinamide diabetic rats. Horm Mol Biol Clin Invest 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Zhang Y , Xie C , Wang H , Foss RM , Clare M , George EV , et al.. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiology-Endocrinology Metab 2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Dun Y , Thomas RJ , Smith JR , Medina-Inojosa JR , Squires RW , Bonikowske AR , et al.. High-intensity interval training improves metabolic syndrome and body composition in outpatient cardiac rehabilitation patients with myocardial infarction. Cardiovasc diabetology 2019; 18(1): 104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Nakhaei H , Mogharnasi M , Fanaei H . Effect of swimming training on levels of asprosin, lipid profile, glucose and insulin resistance in rats with metabolic syndrome. Obes Med 2019; 15: 100111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Rocha GLd , Crisp AH , de Oliveira MR , Silva CAd , Silva JO , Duarte AC , et al.. Effect of high intensity interval and continuous swimming training on body mass adiposity level and serum parameters in high-fat diet fed rats. Scientific World J 2016; 2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Hioki C , Yoshida T , Kogure A , Yoshimoto K , Shimatsu A . Growth hormone administration controls body composition associated with changes of thermogenesis in obese KK-Ay Mice. Open Endocrinol J 2010; 4: 38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Lee MO . Determination of the surface area of the white rat with its application to the expression of metabolic results. Am J Physiology-Legacy Content 1929; 89(1): 2433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Rohman MS , Lukitasari M , Nugroho DA , Nashi W , Nugraheini NIP , Sardjono TW . Development of an experimental model of metabolic syndrome in sprague dawley rat. Res J Life Sci 2017; 4(1): 7686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Bedford TG , Tipton CM , Wilson NC , Oppliger RA , Gisolfi CV . Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol 1979; 47(6): 12781283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Humayun Fard H , Hosseini SA , Azarbayjani MA , Nikbakht M . The effect of interval training with selenium consumption on gene expression of caspase- 3 and cyclin-D in liver tissue of cadmium-exposed rats. Jundishapur J Health Sci 2019; 11(2): e88598.

    • Search Google Scholar
    • Export Citation
  • 37.

    Haram PM , Kemi OJ , Lee SJ , Bendheim , Al-Share QY , Waldum HL , et al.. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res 2009; 81(4): 723732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Matthews D , Hosker J , Rudenski A , Naylor B , Treacher D , Turner R . Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Amri J , Parastesh M , Sadegh M , Latifi S , Alaee M . High-intensity interval training improved fasting blood glucose and lipid profiles in type 2 diabetic rats more than endurance training; possible involvement of irisin and betatrophin. Physiol Int 2019; 106(3): 213224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Sun L , Li F-H , Li T , Min Z , Yang L-D , Gao H-E , et al.. Effects of high-intensity interval training on adipose tissue lipolysis, inflammation, and metabolomics in aged rats. Pflügers Archiv-European J Physiol 2020; 472(2): 245258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Abdi A , Mehrabani J , Nordvall M , Wong A , Fallah A , Bagheri R . Effects of concurrent training on irisin and fibronectin type-III domain containing 5 (FNDC5) expression in visceral adipose tissue in type-2 diabetic rats. Arch Physiol Biochem 2020: 16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Rashidlamir A , Hoseinzadeh M , Zeiaddini Dashtkhaki L . The effects of resistance and endurance training on the liver tissue FNDC5 mRNA gene expression in male rats. Ann Appl Sport Sci 2017; 5(2): 5160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Shirvani H , Rahmati-Ahmadabad S . Irisin interaction with adipose tissue secretions by exercise training and flaxseed oil supplement. Lipids Health Dis 2019; 18(1): 19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Uysal N , Yuksel O , Kizildag S , Yuce Z , Gumus H , Karakilic A , et al.. Regular aerobic exercise correlates with reduced anxiety and incresed levels of irisin in brain and white adipose tissue. Neurosci Lett 2018; 676: 9297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Shykholeslami Z , Abdi A , Barari A , Hosseini SA . The effect of aerobic training with Citrus aurantium L. on SIRT1 and PGC-1α gene expression levels in the liver tissue of elderly rats. Jorjani Biomed J 2019; 7(4): 5765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Ziegler A , Damgaard A , Mackey A , Schjerling P , Magnusson P , Olesen A , et al.. An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. Scientific Rep 2019; 9(1): 110.

    • Search Google Scholar
    • Export Citation
  • 47.

    Buechler C , Feder S , Haberl EM , Aslanidis C . Chemerin isoforms and activity in obesity. Int J Mol Sci 2019; 20(5): 1128.

  • 48.

    Lin X , Yang Y , Qu J , Wang X . Aerobic exercise decreases chemerin/CMKLR1 in the serum and peripheral metabolic organs of obesity and diabetes rats by increasing PPARγ. Nutr Metab 2019; 16(1): 113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Mohammad P , Esfandiar KZ , Abbas S , Ahoora R . Effects of moderate-intensity continuous training and high-intensity interval training on serum levels of Resistin, Chemerin and liver enzymes in Streptozotocin-Nicotinamide induced Type-2 diabetic rats. J Diabetes Metab Disord 2019; 18(2): 379387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Wang S , Dougherty EJ , Danner RL . PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res 2016; 111: 7685.

  • 51.

    Sünnetçi Silistre E , Hatipoğlu HU . Increased serum circulating asprosin levels in children with obesity. Pediatr Int 2020.

  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2024 65 0 0
Oct 2024 123 0 0
Nov 2024 154 0 0
Dec 2024 72 0 0
Jan 2025 91 0 0
Feb 2025 136 0 0
Mar 2025 69 0 0