Authors:
Xing Fang Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA

Search for other papers by Xing Fang in
Current site
Google Scholar
PubMed
Close
,
Reece F. Crumpler Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA

Search for other papers by Reece F. Crumpler in
Current site
Google Scholar
PubMed
Close
,
Kirby N. Thomas Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA

Search for other papers by Kirby N. Thomas in
Current site
Google Scholar
PubMed
Close
,
Jena’ N. Mazique Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA

Search for other papers by Jena’ N. Mazique in
Current site
Google Scholar
PubMed
Close
,
Richard J. Roman Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA

Search for other papers by Richard J. Roman in
Current site
Google Scholar
PubMed
Close
, and
Fan Fan Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA

Search for other papers by Fan Fan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1463-3610
Restricted access

Abstract

Cognitive impairment and dementia are significant health burdens worldwide. Aging, hypertension, and diabetes are the primary risk factors for Alzheimer’s disease and Alzheimer’s disease and related dementias (AD/ADRD). There are no effective treatments for AD/ADRD to date. An emerging body of evidence indicates that cerebral vascular dysfunction and hypoperfusion precedes the development of other AD pathological phenotypes and cognitive impairment. However, vascular contribution to dementia is not currently well understood. This commentary highlights the emerging concepts and mechanisms underlying the microvascular contribution to AD/ADRD, including hypotheses targeting the anterograde and retrograde cerebral vascular pathways, as well as the cerebral capillaries and the venous system. We also briefly discuss vascular endothelial dysfunction, oxidative stress, inflammation, and cellular senescence that may contribute to impaired cerebral blood flow autoregulation, neurovascular uncoupling, and dysfunction of cerebral capillaries and the venous system.

  • 1.

    Alzheimer’s disease facts and figures. Alzheimers Dement 2021; 17(3): 327406.

  • 2.

    Wang S , Roman RJ , Fan F . Duration and magnitude of bidirectional fluctuation in blood pressure: the link between cerebrovascular dysfunction and cognitive impairment following spinal cord injury. J Neurobiol Physiol 2020; 2(1): 1518.

    • Search Google Scholar
    • Export Citation
  • 3.

    Csipo T , Lipecz A , Owens C , Mukli P , Perry JW , Tarantini S , et al. Sleep deprivation impairs cognitive performance, alters task-associated cerebral blood flow and decreases cortical neurovascular coupling-related hemodynamic responses. Sci Rep 2021; 11(1): 20994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Fang X , Zhang H , Wang S , Liu Y , Gao W , Roman RJ , et al. Abstract P076: cerebral vascular dysfunction precedes cognitive impairment in Alzheimer’s disease. Hypertension 2020; 76(Suppl_1): AP076–AP076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Huang LK , Chao SP , Hu CJ . Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27(1): 18.

  • 6.

    Fan F , Roman RJ . Reversal of cerebral hypoperfusion: a novel therapeutic target for the treatment of AD/ADRD? Geroscience 2021; 43(2): 10651067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Iadecola C . The pathobiology of vascular dementia. Neuron 2013; 80(4): 844866.

  • 8.

    Yang AC , Vest RT , Kern F , Lee DP , Maat CA , Losada PM , et al. A human brain vascular atlas reveals diverse cell mediators of Alzheimer’s disease risk. bioRxiv 2021. https://doi.org/10.1101/2021.04.26.

    • Search Google Scholar
    • Export Citation
  • 9.

    Cipolla MJ . The cerebral circulation. San Rafael (CA): Morgan & Claypool Life Sciences; 2009.

  • 10.

    Wang S , Zhang H , Liu Y , Li L , Guo Y , Jiao F , et al. Sex differences in the structure and function of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 2020; 318(5): H1219H1232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhang H , Zhang C , Liu Y , Gao W , Wang S , Fang X , et al. Influence of dual-specificity protein phosphatase 5 on mechanical properties of rat cerebral and renal arterioles. Physiol Rep 2020; 8(2): e14345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Liu Y , Zhang H , Wu CY , Yu T , Fang X , Ryu JJ , et al. 20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility. Prostaglandins Other Lipid Mediat 2021; 154: 106548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Guo Y , Wang S , Liu Y , Fan L , Booz GW , Roman RJ , et al. Accelerated cerebral vascular injury in diabetes is associated with vascular smooth muscle cell dysfunction. Geroscience 2020; 42(2): 547561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Liu Y , Zhang H , Wang S , Guo Y , Fang X , Zheng B , et al. Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiol Heart Circ Physiol 2021; 320(2): H549H562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Fan F , Ge Y , Lv W , Elliott MR , Muroya Y , Hirata T , et al. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed) 2016; 21: 14271463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cai Z , Qiao PF , Wan CQ , Cai M , Zhou NK , Li Q . Role of blood-brain barrier in Alzheimer’s disease. J Alzheimers Dis 2018; 63(4): 12231234.

  • 17.

    Claassen J , Thijssen DHJ , Panerai RB , Faraci FM . Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101(4): 14871559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Wang S , Jiao F , Border JJ , Fang X , Crumpler RF , Liu Y , et al. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am J Physiol Heart Circ Physiol 2022; 322(2): H246H259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Fan F , Pabbidi M , Lin RCS , Ge Y , Gomez-Sanchez EP , Rajkowska GK , et al. Impaired myogenic response of MCA elevates transmission of pressure to penetrating arterioles and contributes to cerebral vascular disease in aging hypertensive FHH rats. FASEB J 2016; 30(S1): 953.7–953.7.

    • Search Google Scholar
    • Export Citation
  • 20.

    Fan F , Geurts AM , Pabbidi MR , Smith SV , Harder DR , Jacob H , et al. Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats. PLoS One 2014; 9(11): e112878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Toth P , Tarantini S , Csiszar A , Ungvari Z . Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 2017; 312(1): H1H20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mughal A , Harraz OF , Gonzales AL , Hill-Eubanks D , Nelson MT . PIP2 improves cerebral blood flow in a mouse model of Alzheimer’s disease. Function (Oxf) 2021; 2(2): zqab010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhang H , Roman R , Fan F . Hippocampus is more susceptible to hypoxic injury: has the Rosetta Stone of regional variation in neurovascular coupling been deciphered? Geroscience 2022; 44(1): 127130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Tarantini S , Tran CHT , Gordon GR , Ungvari Z , Csiszar A . Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol 2017; 94: 5258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Toth P , Tarantini S , Tucsek Z , Ashpole NM , Sosnowska D , Gautam T , et al. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am J Physiol Heart Circ Physiol 2014; 306(3): H299H308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Crumpler R , Roman RJ , Fan F . Capillary stalling: a mechanism of decreased cerebral blood flow in AD/ADRD. J Exp Neurol 2021; 2(4): 149153.

    • Search Google Scholar
    • Export Citation
  • 27.

    Cruz Hernández JC , Bracko O , Kersbergen CJ , Muse V , Haft-Javaherian M , Berg M , et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci 2019; 22(3): 413420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Fulop GA , Tarantini S , Yabluchanskiy A , Molnar A , Prodan CI , Kiss T , et al. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2019; 316(5): H1124H1140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Molnár A , Nádasy GL , Dörnyei G , Patai BB , Delfavero J , Fülöp G , et al. The aging venous system: from varicosities to vascular cognitive impairment. Geroscience 2021; 43(6): 27612784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ungvari Z , Tarantini S , Donato AJ , Galvan V , Csiszar A . Mechanisms of vascular aging. Circ Res 2018; 123(7): 849867.

  • 31.

    Yabluchanskiy A , Nyul-Toth A , Csiszar A , Gulej R , Saunders D , Towner R , et al. Age-related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: insights from animal models of aging. Psychophysiology 2021; 58(7): e13718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Lipecz A , Csipo T , Tarantini S , Hand RA , Ngo BN , Conley S , et al. Age-related impairment of neurovascular coupling responses: a dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. Geroscience 2019; 41(3): 341349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Springo Z , Toth P , Tarantini S , Ashpole NM , Tucsek Z , Sonntag WE , et al. Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries. J Cereb Blood Flow Metab 2015; 35(4): 527530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Toth P , Tucsek Z , Sosnowska D , Gautam T , Mitschelen M , Tarantini S , et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab 2013; 33(11): 17321742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Tucsek Z , Toth P , Tarantini S , Sosnowska D , Gautam T , Warrington JP , et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci 2014; 69(11): 13391352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Fulop GA , Kiss T , Tarantini S , Balasubramanian P , Yabluchanskiy A , Farkas E , et al. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience 2018; 40(5–6): 513521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Fan F , Wang SX , Mims PN , Maeda KJ , Li LY , Geurts AM , et al. Knockout of matrix metalloproteinase-9 rescues the development of cognitive impairments in hypertensive Dahl salt sensitive rats. FASEB J 2017; 31(S1): 842.6–842.6.

    • Search Google Scholar
    • Export Citation
  • 38.

    Fan F , Booz GW , Roman RJ . Aging diabetes, deconstructing the cerebrovascular wall. Aging (Albany NY) 2021; 13(7): 91589159.

  • 39.

    Ungvari Z , Toth P , Tarantini S , Prodan CI , Sorond F , Merkely B , et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol 2021; 17(10): 639654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Nyúl-Tóth Á , Tarantini S , Kiss T , Toth P , Galvan V , Tarantini A , et al. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer’s disease. Geroscience. 2020; 42(6): 16851698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Wang S , Lv W , Zhang H , Liu Y , Li L , Jefferson JR , et al. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. Geroscience 2020; 42(5): 13871410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Roman RJ , Fan F . 20-HETE: hypertension and beyond. Hypertension 2018; 72(1): 1218.

  • 43.

    Toth P , Csiszar A , Tucsek Z , Sosnowska D , Gautam T , Koller A , et al. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol 2013; 305(12): H1698H1708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Fan F , Geurts AM , Murphy SR , Pabbidi MR , Jacob HJ , Roman RJ . Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol 2015; 308(5): R379R390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Fan F , Pabbidi MR , Ge Y , Li L , Wang S , Mims PN , et al. Knockdown of Add3 impairs the myogenic response of renal afferent arterioles and middle cerebral arteries. Am J Physiol Ren Physiol 2017; 312(6): F971F981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Fan F , Simino J , Auchus AP , Knopman DS , Boerwinkle E , Fornage M , et al. Functional variants in CYP4A11 and CYP4F2 are associated with cognitive impairment and related dementia endophenotypes in the elderly. In: The 16th International Winter Eicosanoid Conference; March 13, 2016; Baltimore (MD), USA; 2016. p. CV5.

    • Search Google Scholar
    • Export Citation
  • 47.

    Thomas K , Wang S , Zhang H , Crumpler R , Elliott P , Ryu J , et al. Abstract 35: gamma adducin dysfunction leads to cerebrovascular distention, blood brain barrier leakage, and cognitive deficits in the Fawn-hooded hypertensive rats. Hypertension 2021; 78(Suppl_1): A35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Fan F , Geurts AM , Pabbidi MR , Ge Y , Zhang C , Wang S , et al. A mutation in gamma-adducin impairs autoregulation of renal blood flow and promotes the development of kidney disease. J Am Soc Nephrol. 2020; 31(4): 687700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Gao W , Liu Y , Fan L , Zheng B , Jefferson JR , Wang S , et al. Role of γ-adducin in actin cytoskeleton rearrangements in podocyte pathophysiology. Am J Physiol Ren Physiol 2021; 320(1): F97F113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Ungvari Z , Buffenstein R , Austad SN , Podlutsky A , Kaley G , Csiszar A . Oxidative stress in vascular senescence: lessons from successfully aging species. Front Biosci 2008; 13: 50565070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Berkowitz BA , Podolsky RH , Childers KL , Gow A , Schneider BL , Lloyd SC , et al. Age-related murine hippocampal CA1 laminae oxidative stress measured in vivo by QUEnch-assiSTed (QUEST) MRI: impact of isoflurane anesthesia. Geroscience 2020; 42(2): 563574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Logan S , Royce GH , Owen D , Farley J , Ranjo-Bishop M , Sonntag WE , et al. Accelerated decline in cognition in a mouse model of increased oxidative stress. Geroscience 2019; 41(5): 591607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Toth P , Tarantini S , Springo Z , Tucsek Z , Gautam T , Giles CB , et al. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell 2015; 14(3): 400408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Zhang X , Yang Y , Su J , Zheng X , Wang C , Chen S , et al. Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats. Geroscience 2021; 43(2): 709725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Anerillas C , Abdelmohsen K , Gorospe M . Regulation of senescence traits by MAPKs. Geroscience 2020; 42(2): 397408.

  • 56.

    Arancio W . Progerin expression induces a significant downregulation of transcription from human repetitive sequences in iPSC-derived dopaminergic neurons. Geroscience 2019; 41(1): 3949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Attaallah A , Lenzi M , Marchionni S , Bincoletto G , Cocchi V , Croco E , et al. A pro longevity role for cellular senescence. Geroscience 2020; 42(3): 867879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 42 3 3
Jul 2023 55 0 0
Aug 2023 53 0 0
Sep 2023 35 3 3
Oct 2023 61 4 1
Nov 2023 86 8 0
Dec 2023 16 0 0