Authors:
Xiaoping Wu Department of Neurology, Chengdu First People’s Hospital, Chengdu, Sichuan, 610041, China

Search for other papers by Xiaoping Wu in
Current site
Google Scholar
PubMed
Close
,
Xuan Zhang Department of Neurology, Chengdu First People’s Hospital, Chengdu, Sichuan, 610041, China

Search for other papers by Xuan Zhang in
Current site
Google Scholar
PubMed
Close
,
Lei Zhao Department of Neurology, Chengdu First People’s Hospital, Chengdu, Sichuan, 610041, China

Search for other papers by Lei Zhao in
Current site
Google Scholar
PubMed
Close
, and
Shan Jiang Department of Anesthesiology, (Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology), Wuhan, Hubei, 430016, China

Search for other papers by Shan Jiang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5156-1284
Restricted access

Abstract

Purpose

This study aimed to evaluate and identify the value and explore the mechanisms of Angiogenic Factor with G-patch and FHA domains 1 (AGGF1) in postoperative cognitive dysfunction (POCD).

Methods

Rats were separated into four different groups, namely sham, isoflurane, isoflurane + recombinant human Aggf1 (rh-Aggf1) (5 μg kg−1), and isoflurane + rh-Aggf1 (10 μg kg−1). qPCR and western blot assays were applied to detect the correlation between the expression of AGGF1 and isoflurane administration. Then, the Morris water maze (MWM) test was applied to evaluate the effect of AGGF1 on improving the POCD rats. Subsequently, TUNEL assay was applied and the cell apoptosis-related proteins were tested to reveal the anti-apoptotic effect of AGGF1 in POCD rats. Furthermore, the mRNA and protein levels of TNF-α, IL-6, and IL-1β were also detected by qPCR and ELISA to verify the anti-inflammatory effects of AGGF1 on POCD rats. Besides, the protein expression levels of PI3K, Akt, and NF-κB in each group were examined by western blot.

Results

In this study, the results revealed that isoflurane induced a decrease in AGGF1 expression in the hippocampus of aged rats. In addition, exogenous AGGF1 attenuated POCD in aged rats. Meanwhile, exogenous AGGF1 had anti-apoptotic and anti-inflammatory effects in POCD rats. Further research indicated that AGGF1 activated the PI3K/Akt pathway.

Conclusion

AGGF1 has neuroprotective effect against isoflurane-induced cognitive dysfunction in aged rats via activating the PI3K/AKT signaling pathways.

  • 1.

    Vutskits L , Xie Z . Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci 2016; 17(11): 705717.

  • 2.

    Moller JT , Cluitmans P , Rasmussen LS , Houx P , Rasmussen H , Canet J , et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet 1998; 351(9106): 857861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Steinmetz J , Christensen KB , Lund T , Lohse N , Rasmussen LS . Long-term consequences of postoperative cognitive dysfunction. Anesthesiology 2009; 110(3): 548555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Monk TG , Weldon BC , Garvan CW , Dede DE , van der Aa MT , Heilman KM , et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008; 108(1): 1830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Shu Q , Zhao X , Geng X , Wang X . CD82 aggravates sevoflurane-induced neurotoxicity by regulating TRPM7 in developing neurons. Signa Vitae 2020; 16(2): 142147.

    • Search Google Scholar
    • Export Citation
  • 6.

    Hovens IB , van Leeuwen BL , Nyakas C , Heineman E , van der Zee EA , Schoemaker RG . Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol Learn Mem 2015; 118: 7479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Li W. Phagocyte dysfunction, tissue aging and degeneration. Ageing Res Rev 2013; 12(4): 10051012.

  • 8.

    Wang Z , Meng S , Cao L , Chen Y , Zuo Z , Peng S . Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment. J Neuroinflammation 2018; 15(1): 109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Zhang X , Dong H , Li N , Zhang S , Sun J , Zhang S , et al. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J Neuroinflammation 2016; 13(1): 127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Guo M , Zhu X , Xu H , Li J , Yang S , Zuo Z , et al. Ulinastatin attenuates isoflurane-induced cognitive dysfunction in aged rats by inhibiting neuroinflammation and β-amyloid peptide expression in the brain. Neurol Res 2019; 41(10): 923929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Renault TT , Floros KV , Elkholi R , Corrigan KA , Kushnareva Y , Wieder SY , et al. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. Mol Cell 2015; 57(1): 6982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Si W , Zhou B , Xie W , Li H , Li K , Li S , et al. Angiogenic factor AGGF1 acts as a tumor suppressor by modulating p53 post-transcriptional modifications and stability via MDM2. Cancer Lett 2021; 497: 2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Liu Y , Yang H , Song L , Li N , Han QY , Tian C , et al. AGGF1 protects from myocardial ischemia/reperfusion injury by regulating myocardial apoptosis and angiogenesis. Apoptosis 2014; 19(8): 12541268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Shen S , Shang L , Liu H , Liang Q , Liang W , Ge S . AGGF1 inhibits the expression of inflammatory mediators and promotes angiogenesis in dental pulp cells. Clin Oral Investig 2021; 25(2): 581592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Yao Y , Hu Z , Ye J , Hu C , Song Q , Da X , et al. Targeting AGGF1 (angiogenic factor with G patch and FHA domains 1) for blocking neointimal formation after vascular injury. J Am Heart Assoc 2017; 6(6): e005889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Zhu Q , Enkhjargal B , Huang L , Zhang T , Sun C , Xie Z , et al. Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 2018; 15(1): 178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Yang LH , Xu YC , Zhang W . Neuroprotective effect of CTRP3 overexpression against sevoflurane anesthesia-induced cognitive dysfunction in aged rats through activating AMPK/SIRT1 and PI3K/AKT signaling pathways. Eur Rev Med Pharmacol Sci 2020; 24(9): 50915100.

    • Search Google Scholar
    • Export Citation
  • 18.

    Zhang BJ , Yuan CX . Effects of ADAM2 silencing on isoflurane-induced cognitive dysfunction via the P13K/Akt signaling pathway in immature rats. Biomed Pharmacother 2019; 109: 217225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    National Research Council . Guide for the care and use of laboratory animals: Eighth Edition. Washington, DC: The National Academies Press; 2011. 246 p.

    • Search Google Scholar
    • Export Citation
  • 20.

    Li XM , Zhou MT , Wang XM , Ji MH , Zhou ZQ , Yang JJ . Resveratrol pretreatment attenuates the isoflurane-induced cognitive impairment through its anti-inflammation and -apoptosis actions in aged mice. J Mol Neurosci 2014; 52(2): 286293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Vorhees CV , Williams MT . Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1(2): 848858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hu FY , Wu C , Li Y , Xu K , Wang WJ , Cao H , et al. AGGF1 is a novel anti-inflammatory factor associated with TNF-α-induced endothelial activation. Cell Signal 2013; 25(8): 16451653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhong H , Hao L , Li X , Wang C , Wu X . Anti-inflammatory role of trilobatin on lipopolysaccharide-induced acute lung injury through activation of AMPK/GSK3β-Nrf2 pathway. Signa Vitae 2020; 16(2): 160166.

    • Search Google Scholar
    • Export Citation
  • 24.

    Xu W , Zeng S , Li M , Fan Z , Zhou B . Aggf1 attenuates hepatic inflammation and activation of hepatic stellate cells by repressing Ccl2 transcription. J Biomed Res 2017; 31(5): 428436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Wang W , Li GY , Zhu JY , Huang DB , Zhou HC , Zhong W , et al. Overexpression of AGGF1 is correlated with angiogenesis and poor prognosis of hepatocellular carcinoma. Med Oncol 2015; 32(4): 131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Yao Y , Lu Q , Hu Z , Yu Y , Chen Q , Wang QK . A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat Commun 2017; 8(1): 133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Yao Y , Li Y , Song Q , Hu C , Xie W , Xu C , et al. Angiogenic factor AGGF1-primed endothelial progenitor cells repair vascular defect in diabetic mice. Diabetes 2019; 68(8): 16351648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Zhang X , Sun H , Chen W , He X . Elevated expression of AGGF1 predicts poor prognosis and promotes the metastasis of colorectal cancer. BMC Cancer 2019; 19(1): 1252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lu Q , Yao Y , Yao Y , Liu S , Huang Y , Lu S , et al. Angiogenic factor AGGF1 promotes therapeutic angiogenesis in a mouse limb ischemia model. PLoS One 2012; 7(10): e46998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Yao HH , Zhao YJ , He YF , Huang DB , Wang W . Knockdown of AGGF1 inhibits the invasion and migration of gastric cancer via epithelial-mesenchymal transition through Wnt/β-catenin pathway. Cancer Cell Int 2019; 19: 41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Yang C , Zheng J , Xue Y , Yu H , Liu X , Ma J , et al. The effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 Axis regulating glioblastoma angiogenesis. Front Mol Neurosci 2017; 10: 437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Tian XL , Kadaba R , You SA , Liu M , Timur AA , Yang L , et al. Identification of an angiogenic factor that when mutated causes susceptibility to Klippel-Trenaunay syndrome. Nature 2004; 427(6975): 640645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 87 0 0
Sep 2024 51 0 0
Oct 2024 158 1 1
Nov 2024 60 0 0
Dec 2024 37 0 0
Jan 2025 33 0 0
Feb 2025 0 0 0