Authors:
Daphney M. Stanford The Department of Health, Exercise Science, and Recreation Management, Applied Human Health and Physical Function Laboratory, The University of Mississippi, Mississippi, MS, USA

Search for other papers by Daphney M. Stanford in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2528-4129
,
J. Grant Mouser Department of Kinesiology and Health Promotion, Applied Physiology Laboratory, Troy University, Troy, AL, USA

Search for other papers by J. Grant Mouser in
Current site
Google Scholar
PubMed
Close
,
Matthew A. Chatlaong The Department of Health, Exercise Science, and Recreation Management, Applied Human Health and Physical Function Laboratory, The University of Mississippi, Mississippi, MS, USA

Search for other papers by Matthew A. Chatlaong in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2513-4377
, and
Matthew B. Jessee The Department of Health, Exercise Science, and Recreation Management, Applied Human Health and Physical Function Laboratory, The University of Mississippi, Mississippi, MS, USA

Search for other papers by Matthew B. Jessee in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7721-4117
Restricted access

Abstract

Blood flow restriction is growing in popularity as a tool for increasing muscular size and strength. Currently, guidelines exist for using blood flow restriction alone and in combination with endurance and resistance exercise. However, only about 1.3% of practitioners familiar with blood flow restriction applications have utilized it for vascular changes, suggesting many of the guidelines are based on skeletal muscle outcomes. Thus, this narrative review is intended to explore the literature available in which blood flow restriction, or a similar application, assess the changes in vascular structure or function. Based on the literature, there is a knowledge gap in how applying blood flow restriction with relative pressures may alter the vasculature when applied alone, with endurance exercise, and with resistance exercise. In many instances, the application of blood flow restriction was not in accordance with the current guidelines, making it difficult to draw definitive conclusions as to how the vascular system would be affected. Additionally, several studies report no change in vascular structure or function, but few studies look at variables for both outcomes. By examining outcomes for both structure and function, investigators would be able to generate recommendations for the use of blood flow restriction to improve vascular structure and/or function in the future.

  • 1.

    Patterson SD , Hughes L , Warmington S , Burr J , Scott BR , Owens J , et al. Blood flow restriction exercise position stand: considerations of methodology, application, and safety. Front Physiol 2019; 10: 533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Jessee MB , Buckner SL , Mouser JG , Mattocks KT , Loenneke JP . Letter to the editor: applying the blood flow restriction pressure: the elephant in the room. Am J Physiol Heart Circ Physiol 2016; 310(1): H1323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Loenneke JP , Fahs CA , Rossow LM , Thiebaud RS , Mattocks KT , Abe T , et al. Blood flow restriction pressure recommendations: a tale of two cuffs. Front Physiol 2013; 4: 249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Jones H , Nyakayiru J , Bailey TG , Green DJ , Cable NT , Sprung VS , et al. Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. Eur J Prev Cardiol 2015; 22(8): 10837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Patterson SD , Brandner CR . The role of blood flow restriction training for applied practitioners: a questionnaire-based survey. J Sports Sci 2018; 36(2): 12330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Kubota A , Sakuraba K , Sawaki K , Sumide T , Tamura Y . Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc 2008; 40(3): 52934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Abe T , Sakamaki M , Fujita S , Ozaki H , Sugaya M , Sato Y , et al. Effects of low-intensity walk training with restricted leg blood flow. J Geriatr Phys Ther 2010; 33(1): 3440.

    • Search Google Scholar
    • Export Citation
  • 8.

    Farup J , de Paoli F , Bjerg K , Riis S , Ringgard S , Vissing K . Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports 2015; 25(6): 75463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Horiuchi M , Okita K . Blood flow restricted exercise and vascular function. Int J Vasc Med 2012; 2012: 543218.

  • 10.

    da Cunha Nascimento D , Schoenfeld BJ , Prestes J . Potential implications of blood flow restriction exercise on vascular health: a brief review. Sports Med 2020; 50(1): 7381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pereira-Neto EA , Lewthwaite H , Boyle T , Johnston K , Bennett H , Williams MT . Effects of exercise training with blood flow restriction on vascular function in adults: a systematic review and meta-analysis. PeerJ 2021; 9: e11554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Barbosa JBNBN , Maia TO , Alves PS , Bezerra SD , Moura ECSCCSC , Medeiros AIC , et al. Does blood flow restriction training increase the diameter of forearm vessels in chronic kidney disease patients? A randomized clinical trial. J Vasc Access 2018; 19(6): 62633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Downs ME , Hackney KJ , Martin D , Caine TL , Cunningham D , O'Connor DP , et al. Acute vascular and cardiovascular responses to blood flow-restricted exercise. Med Sci Sports Exerc 2014; 46(8): 148997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Fahs CA , Rossow LM , Loenneke JP , Thiebaud RS , Kim D , Bemben DA , et al. Effect of different types of lower body resistance training on arterial compliance and calf blood flow. Clin Physiol Funct Imaging 2012; 32(1): 4551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Vieira PJC , Chiappa GR , Umpierre D , Stein R , Ribeiro JP . Hemodynamic responses to resistance exercise with restricted blood flow in young and older men. J Strength Cond Res 2013; 27(8): 228894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Mouser JG , Mattocks KT , Buckner SL , Dankel SJ , Jessee MB , Bell ZW , et al. High-pressure blood flow restriction with very low load resistance training results in peripheral vascular adaptations similar to heavy resistance training. Physiol Meas 2019; 40(3): 035003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Dinenno FA , Jones PP , Seals DR , Tanaka H . Limb blood flow and vascular conductance are reduced with age in healthy humans. Circulation 1999; 100(2): 16470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Mattace-Raso FUS , Hofman A , Verwoert GC , Wittemana JCM , Wilkinson I , Cockcroft J , et al. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘Establishing normal and reference values’. Eur Heart J 2010; 31(19): 233850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Clark BC , Manini TM , Hoffman RL , Williams PS , Guiler MK , Knutson MJ , et al. Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports 2011; 21(5): 65362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Yasuda T , Fukumura K , Uchida Y , Koshi H , Iida H , Masamune K , et al. Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults. J Gerontol A Biol Sci Med Sci 2014; 70(8): 9508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Yasuda T , Fukumura K , Iida H , Nakajima T . Effects of detraining after blood flow-restricted low-load elastic band training on muscle size and arterial stiffness in older women. Springerplus 2015; 4: 348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Yasuda T , Fukumura K , Fukuda T , Uchida Y , Iida H , Meguro M , et al. Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults. Scand J Med Sci Sports 2014; 24(5): 799806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Fahs CA , Rossow LM , Thiebaud RS , Loenneke JP , Kim D , Abe T , et al. Vascular adaptations to low-load resistance training with and without blood flow restriction. Eur J Appl Physiol 2014; 114(4): 71524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hunt JEA , Walton LA , Ferguson RA . Brachial artery modifications to blood flow-restricted handgrip training and detraining. J Appl Physiol 2012; 112(6): 95661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Thijssen D , Bruno RM , Van Mil A , Holder S , Faita F , Greyling A , et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur Heart J 2019; 40(30): 253447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kubota A , Sakuraba K , Koh S , Ogura Y , Tamura Y . Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport 2011; 14(2): 959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Takarada Y , Takazawa H , Ishii N . Applications of vascular occlusion diminish disuse atrophy. Med Sci Sports Exerc 2000; 32(12): 20359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Iversen E , Røstad V , Larmo A . Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci 2016; 5(1): 1158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen JN , Slysz JT , King TJ , Coates AM , King RT , Burr JF . Blood flow restriction in the presence or absence of muscle contractions does not preserve vasculature structure and function following 14–days of limb immobilization. Eur J Appl Physiol 2021; 121(9): 243747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Raza A , Steinberg K , Tartaglia J , Frishman WH , Gupta T . Enhanced external counterpulsation therapy. Cardiol Rev 2017; 25(2): 5967.

  • 31.

    Lawson WE , Hui JCK , Zheng ZS , Burger L , Jiang L , Lillis O , et al. Improved exercise tolerance following enhanced external counterpulsation: cardiac or peripheral effect? Cardiology 1996; 87(4): 2715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Gurovich AN , Braith RW . Enhanced external counterpulsation creates acute blood flow patterns responsible for improved flow-mediated dilation in humans. Hypertens Res 2013; 36(4): 297305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Jones H , Hopkins N , Bailey TG , Green DJ , Cable NT , Thijssen DH . Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. Am J Hypertens 2014; 27(7): 91825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Kimura M , Ueda K , Goto C , Jitsuiki D , Nishioka K , Umemura T , et al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2007; 27(6): 140310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Iida H , Takano H , Meguro K , Asada K , Oonuma H , Morita T , et al. Hemodynamic and autonomic nervous responses to the restriction of femoral blood flow by KAATSU. Int J KAATSU Train Res 2005; 1(2): 5764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Iida H , Kurano M , Takano H , Kubota N , Morita T , Meguro K , et al. Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol 2007; 100(3): 27585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Loenneke JP , Fahs CA , Thiebaud RS , Rossow LM , Abe T , Ye X , et al. The acute hemodynamic effects of blood flow restriction in the absence of exercise. Clin Physiol Funct Imaging 2013; 33(1): 7982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Iida H , Kurano M , Takano H , Oonuma H , Imuta H , Kubota N , et al. Can KAATSU be used for an orthostatic stress in astronauts?: A case study. Int J KAATSU Train Res 2006; 2(2): 4552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Nakajima T , Iida H , Kurano M , Takano H , Morita T , Meguro K , et al. Hemodynamic responses to simulated weightlessness of 24-h head-down bed rest and KAATSU blood flow restriction. Eur J Appl Physiol 2008; 104(4): 72737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Kaplon RE , Walker AE , Seals DR . Plasma norepinephrine is an independent predictor of vascular endothelial function with aging in healthy women. J Appl Physiol 2011; 111(5): 141621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Neutel JM . Effect of the renin-angiotensin system on the vessel wall: using ACE inhibition to improve endothelial function. J Hum Hypertens 2004; 18(9): 599606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Tahara A , Saito M , Tsukada J , Ishii N , Tomura Y , Wada KI , et al. Vasopressin increases vascular endothelial growth factor secretion from human vascular smooth muscle cells. Eur J Pharmacol 1999; 368(1): 8994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Wang Y , Zang QS , Liu Z , Wu Q , Maass D , Dulan G , et al. Regulation of vegf-induced endothelial cell migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol 2011; 301(3): C695704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Lamalice L , Le Boeuf F , Huot J . Endothelial cell migration during angiogenesis. Circ Res 2007; 100(6): 782–94.

  • 45.

    Centner C , Zdzieblik D , Dressler P , Fink B , Gollhofer A , König D . Acute effects of blood flow restriction on exercise-induced free radical production in young and healthy subjects. Free Radic Res 2018; 52(4): 44654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Zhang DX , Gutterman DD . Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2007; 292(5): H202331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Mouser JG , Dankel SJ , Jessee MB , Mattocks KT , Buckner SL , Counts BR , et al. A tale of three cuffs: the hemodynamics of blood flow restriction. Eur J Appl Physiol 2017; 117(7): 14939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Schreuder THA , Green DJ , Hopman MTE , Thijssen DHJ . Acute impact of retrograde shear rate on brachial and superficial femoral artery flow-mediated dilation in humans. Physiol Rep 2014; 2(1):e00193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Thijssen DHJ , Dawson EA , Tinken TM , Cable NT , Green DJ . Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension 2009; 53(6): 98692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    De Keulenaer GW , Chappell DC , Ishizaka N , Nerem RM , Wayne Alexander R , Griendling KK . Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res 1998; 82(10): 1094101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Credeur DP , Hollis BC , Welsch MA . Effects of handgrip training with venous restriction on brachial artery vasodilation. Med Sci Sports Exerc 2010; 42(7): 1296302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Mouser JG , Ade CJ , Black CD , Bemben DA , Bemben MG . Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion. Clin Physiol Funct Imaging 2018; 38(3): 42530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Garber CE , Blissmer B , Deschenes MR , Franklin BA , Lamonte MJ , Lee IM , et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 2011; 43(7): 133459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Park S , Kim JK , Choi HM , Kim HG , Beekley MD , Nho H . Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Eur J Appl Physiol 2010; 109(4): 591600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Abe T , Fujita S , Nakajima T , Sakamaki M , Ozaki H , Ogasawara R , et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2MAX in young men. J Sports Sci Med 2010; 9(3): 4528.

    • Search Google Scholar
    • Export Citation
  • 56.

    Kim D , Singh H , Loenneke JP , Thiebaud RS , Fahs CA , Rossow LM , et al. Comparative effects of vigorous-intensity and low-intensity blood flow restricted cycle training and detraining on muscle mass, strength, and aerobic capacity. J Strength Cond Res 2016; 30(5): 145361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Paton CD , Addis SM , Taylor L-AA . The effects of muscle blood flow restriction during running training on measures of aerobic capacity and run time to exhaustion. Eur J Appl Physiol 2017; 117(12): 257985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Renzi CP , Tanaka H , Sugawara J . Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exerc 2010; 42(4): 72632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Ozaki H , Miyachi M , Nakajima T , Abe T . Effects of 10 weeks walk training with leg blood flow reduction on carotid arterial compliance and muscle size in the elderly adults. Angiology 2011; 62(1): 816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Christiansen D , Eibye K , Hostrup M , Bangsbo J . Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. J Physiol 2020; 598(12): 233753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Christiansen D , Eibye KH , Rasmussen V , Voldbye HM , Thomassen M , Nyberg M , et al. Cycling with blood flow restriction improves performance and muscle K + regulation and alters the effect of anti-oxidant infusion in humans. J Physiol 2019; 597(9): 242144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Iida H , Nakajima T , Kurano M , Yasuda T , Sakamaki M , Sato Y , et al. Effects of walking with blood flow restriction on limb venous compliance in elderly subjects. Clin Physiol Funct Imaging 2011; 31(6): 4726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Karabulut M , Esparza B , Dowllah IM , Karabulut U . The impact of low-intensity blood flow restriction endurance training on aerobic capacity, hemodynamics, and arterial stiffness. J Sports Med Phys Fitness 2021; 61(7): 87784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Tangchaisuriya P , Chuensiri N , Tanaka H , Suksom D . Physiological adaptations to high-intensity interval training combined with blood flow restriction in masters road cyclists. Med Sci Sports Exerc 2022; 54(5): 83040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Jessee MB , Buckner SL , Grant Mouser J , Mattocks KT , Dankel SJ , Abe T , et al. Muscle adaptations to high-load training and very low-load training with and without blood flow restriction. Front Physiol 2018; 9: 1448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Mitchell CJ , Churchward-Venne TA , West DWD , Burd NA , Breen L , Baker SK , et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 2012; 113(1): 717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Burd NA , Holwerda AM , Selby KC , West DWD , Staples AW , Cain NE , et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol 2010; 588(16): 311930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Fahs CA , Loenneke JP , Thiebaud RS , Rossow LM , Kim D , Abe T , et al. Muscular adaptations to fatiguing exercise with and without blood flow restriction. Clin Physiol Funct Imaging 2015; 35(3): 16776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Rakobowchuk M , McGowan CL , De Groot PC , Hartman JW , Phillips SM , MacDonald MJ . Endothelial function of young healthy males following whole body resistance training. J Appl Physiol 2005; 98(6): 218590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Patterson SD , Ferguson RA . Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur J Appl Physiol 2010; 108(5): 102533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Evans C , Vance S , Brown M . Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles. J Sports Sci 2010; 28(9): 9991007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Jessee MB , Mattocks KT , Buckner SL , Mouser JG , Counts BR , Dankel SJ , et al. The acute muscular response to blood flow-restricted exercise with very low relative pressure. Clin Physiol Funct Imaging 2017; 38(2): 30411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Hunt JEAA , Galea D , Tufft G , Bunce D , Ferguson RA . Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J Appl Physiol 2013; 115(3): 40311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Collier SR , Kanaley JA , Carhart R , Frechette V , Tobin MM , Hall AK , et al. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens 2008; 22(10): 67886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Ashor AW , Lara J , Siervo M , Celis-Morales C , Mathers JC . Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2014; 9(10): e110034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Kim SJ , Sherk VD , Bemben MG , Bemben DA . Effects of short-term, low-intensity resistance training with vascular restriction on arterial compliance in untrained young men. Int J KAATSU Train Res 2009; 5(1): 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Ozaki H , Yasuda T , Ogasawara R , Sakamaki-Sunaga M , Naito H , Abe T . Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions. Eur J Appl Physiol 2013; 113(1): 16774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Koji Y , Tomiyama H , Ichihashi H , Nagae T , Tanaka N , Takazawa K , et al. Comparison of ankle-brachial pressure index and pulse wave velocity as markers of the presence of coronary artery disease in subjects with a high risk of atherosclerotic cardiovascular disease. Am J Cardiol 2004; 94(7): 86872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Munakata M. Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: recent evidence and clinical applications. Curr Hypertens Rev 2014; 10(1): 4957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Bond V , Curry BH , Kumar K , Pemminati S , Gorantla VR , Kadur K , et al. Restricted blood flow exercise in sedentary, overweight African-American females may increase muscle strength and decrease endothelial function and vascular autoregulation. J Pharmacopuncture 2017; 20(1): 238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Shimizu R , Hotta K , Yamamoto S , Matsumoto T , Kamiya K , Kato M , et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur J Appl Physiol 2016; 116(4): 74957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Steiner DRS , Gonzalez NC , Wood JG . Interaction between reactive oxygen species and nitric oxide in the microvascular response to systemic hypoxia. J Appl Physiol 2002; 93(4): 14118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Early KS , Rockhill M , Bryan A , Tyo B , Buuck D , McGinty J . Effect of blood flow restriction training on muscular performance, pain and vascular function. Int J Sports Phys Ther 2020; 15(6): 892900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Ramis TR , Muller CHdL , Boeno FP , Teixeira BC , Rech A , Pompermayer MG , et al. Effects of traditional and vascular restricted strength training program with equalized volume on isometric and dynamic strength, muscle thickness, electromyographic activity, and endothelial function adaptations in young adultsJ Strength Cond Res 2020; 34(3): 68998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Green DJ , Hopman MTE , Padilla J , Laughlin MH , Thijssen DHJ . Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev 2017; 97(2): 495528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Green DJ , Spence A , Rowley N , Thijssen DHJ , Naylor LH . Vascular adaptation in athletes: is there an 'athlete's artery'? Exp Physiol 2012; 97(3): 295304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Laughlin MH . Endothelium-mediated control of coronary vascular tone after chronic exercise training. Med Sci Sports Exerc 1995; 27(8): 113544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Milkiewicz M , Hudlicka O , Brown MD , Silgram H . Nitric oxide, VEGF, and VEGFR-2: interactions in activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 2005; 289(1): H33643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Miller BW , Hay JM , Prigent SA , Dickens M . Post-transcriptional regulation of VEGF-A mRNA levels by mitogen-activated protein kinases (MAPKs) during metabolic stress associated with ischaemia/reperfusion. Mol Cell Biochem 2012; 367(1–2): 3142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Takano H , Morita T , Iida H , Asada K- ii , Kato M , Uno K , et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 2005; 95(1): 6573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Patterson SD , Leggate M , Nimmo MA , Ferguson RA . Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol 2013; 113(3): 7139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Ferguson RA , Hunt JEA , Lewis MP , Martin NRW , Player DJ , Stangier C , et al. The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction. Eur J Sport Sci 2018; 18(3): 397406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Larkin KA , Macneil RG , Dirain M , Sandesara B , Manini TM , Buford TW . Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Med Sci Sports Exerc 2012; 44(11): 207783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Item F , Denkinger J , Fontana P , Weber M , Boutellier U , Toigo M . Combined effects of whole-body vibration, resistance exercise, and vascular occlusion on skeletal muscle and performance. Int J Sports Med 2011; 32(10): 7817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Item F , Nocito A , Thöny S , Bächler T , Boutellier U , Wenger RH , et al. Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances. Eur J Appl Physiol 2013; 113(4): 108190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Chih-Min W , Wen-Chyuan C , Zong-Yan C . Effect of acute whole-body vibration exercise with blood flow restriction on vascular endothelial growth factor response. Kinesiology 2018; 50(2): 14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Cai ZY , Wang WY , Lin JD , Wu CM . Effects of whole body vibration training combined with blood flow restriction on muscle adaptation. Eur J Sport Sci 2021; 21(2): 20412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Gorgey AS , Timmons MK , Dolbow DR , Bengel J , Fugate-Laus KC , Michener LA , et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol 2016; 116(6): 123144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Park J , Stanford DM , Buckner SL , Jessee MB . The acute muscular response to passive movement and blood flow restriction. Clin Physiol Funct Imaging 2020; 40(5): 3519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Barbalho M , Rocha AC , Seus TL , Raiol R , Del Vecchio FB , Coswig VS . Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial. Clin Rehabil 2019; 33(2): 23340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Salceda S , Caro J . Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272(36): 226427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Stevens-Lapsley JE , Balter JE , Wolfe P , Eckhoff DG , Kohrt WM . Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: a randomized controlled trial. Phys Ther 2012; 92(2): 21026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2024  
Web of Science  
Journal Impact Factor 2.3
Rank by Impact Factor Q2 (Physiology)
Journal Citation Indicator 0.73
Rank by Journal Citation Indicator Q3 (Physiology)
Scopus  
CiteScore 4.1
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.541
Scimago  
SJR index 0.356
SJR Q rank Q2

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge Effective from 1st Apr 2025:
600 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2025 119 0 0
Feb 2025 129 0 0
Mar 2025 110 0 0
Apr 2025 52 1 2
May 2025 100 0 0
Jun 2025 58 0 0
Jul 2025 0 0 0