Authors:
Li Yan Department of Cardiology, Shaanxi Provincial People Hospital, Xian, China

Search for other papers by Li Yan in
Current site
Google Scholar
PubMed
Close
,
Xiting Nong Department of Endocrinology, Xi'an Central Hospital, Xian, China

Search for other papers by Xiting Nong in
Current site
Google Scholar
PubMed
Close
,
Jizhao Deng Department of Cardiology, Shaanxi Provincial People Hospital, Xian, China

Search for other papers by Jizhao Deng in
Current site
Google Scholar
PubMed
Close
, and
Guang Yang Department of Cardiology, Shaanxi Provincial People Hospital, Xian, China

Search for other papers by Guang Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6702-868X
Restricted access

Abstract

Objective

To investigate the role of IGF1 and SIRT1 pathways in protection of hydrogen peroxide (H2O2)-induced aging in H9c2 rat cardiomyocyte cells by testosterone.

Methods

The cells were treated with testosterone or up- or down-regulated for the IGF1 and SIRT1 genes and assessed for apoptosis, aging and expression of relevant genes.

Results

Aging was induced and the expression of SIRT1 and IGF1 was down-regulated after H2O2 treatment in H9c2 cells. The aging was attenuated in a dose-dependent manner after the cells were exposed to testosterone. Down-regulation of SIRT1 and IGF1expression was offset in the H2O2-treated cells co-treated with testosterone. Up- or down-regulation of IGF1 significantly reduced or increased senescence-associated beta-galactosidase (SA-β-gal) cells and the ROS level, respectively. In addition, SIRT1 expression was regulated by IGF1 expression. Down- or up-regulation of SIRT1 significantly decreased or increased the IGF1 levels, respectively. Furthermore, after IGF1 and SIRT1 knockdown, testosterone did not protect the cells from senescence. Testosterone, and overexpression of IGF1 and SIRT1 also up-regulated the expression of the fetal genes SERCA2 and MYH6 and down-regulated the expression of the ACTA1 and MYH7 genes.

Conclusions

Our data indicate that testosterone can attenuate cardiomyocyte aging induced by H2O2 and up-regulate SIRT1 and IGF1. The IGF1and SIRT1 pathway may be new targets to treat heart aging and heart failure.

  • 1.

    Ambrosy AP , Fonarow GC , Butler J , Chioncel O , Greene SJ , Vaduganathan M , et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 2014; 63(12): 11231133. https://doi.org/10.1016/j.jacc.2013.11.053.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ponikowski P , Anker SD , AlHabib KF , Cowie MR , Force TL , Hu S , et al. Heart failure: preventing disease and death worldwide. ESC Heart Fail 2014; 1(1): 425. https://doi.org/10.1002/ehf2.12005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Conrad N , Judge A , Tran J , Mohseni H , Hedgecott D , Crespillo AP , et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 2018; 391(10120): 572580. https://doi.org/10.1016/S0140-6736(17)32520-5.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Blecker S , Paul M , Taksler G , Ogedegbe G , Katz S . Heart failure-associated hospitalizations in the United States. J Am Coll Cardiol 2013; 61(12): 12591267. https://doi.org/10.1016/j.jacc.2012.12.038.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sheth A , Bhandari R , Patel H , Morin DP , Dominic P . Google search activity and heart failure: analysis of the US population's interest in heart failure and its correlation with heart failure-associated mortality. J Card Fail 2021; 27(1): 123125. https://doi.org/10.1016/j.cardfail.2020.11.005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Spater D , Hansson EM , Zangi L , Chien KR . How to make a cardiomyocyte. Development 2014; 141(23): 44184431. https://doi.org/10.1242/dev.091538.

  • 7.

    Pereira RM , Mekary RA , da Cruz Rodrigues KC , Anaruma CP , Ropelle ER , da Silva ASR , et al. Protective molecular mechanisms of clusterin against apoptosis in cardiomyocytes. Heart Fail Rev 2018; 23(1): 123129. https://doi.org/10.1007/s10741-017-9654-z.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tang X , Li PH , Chen HZ . Cardiomyocyte senescence and cellular communications within myocardial microenvironments. Front Endocrinol (Lausanne) 2020; 11: 280. https://doi.org/10.3389/fendo.2020.00280.

    • Search Google Scholar
    • Export Citation
  • 9.

    Kloner RA , Carson C, 3rd , Dobs A , Kopecky S , Mohler ER, 3rd . Testosterone and cardiovascular disease. J Am Coll Cardiol 2016; 67(5): 545557. https://doi.org/10.1016/j.jacc.2015.12.005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kaufman JM , Lapauw B , Mahmoud A , T'Sjoen G , Huhtaniemi IT . Aging and the male reproductive system. Endocr Rev 2019; 40(4): 906972. https://doi.org/10.1210/er.2018-00178.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Seilanov AS , Kondrashova TV , Konev VV . Change in the replicative synthesis of DNA and in respiration during gamma–irradiation of cultured human lymphocytes. Radiobiologiia 1988; 28(5): 607610.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tao J , Liu X , Bai W . Testosterone supplementation in patients with chronic heart failure: a meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2020; 11: 110. https://doi.org/10.3389/fendo.2020.00110.

    • Search Google Scholar
    • Export Citation
  • 13.

    Iellamo F , Volterrani M , Caminiti G , Karam R , Massaro R , Fini M , et al. Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study. J Am Coll Cardiol 2010; 56(16): 13101316. https://doi.org/10.1016/j.jacc.2010.03.090.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Schwartz JB , Volterrani M , Caminiti G , Marazzi G , Fini M , Rosano GM , et al. Effects of testosterone on the Q-T interval in older men and older women with chronic heart failure. Int J Androl 2011; 34(5 Pt 2): e415e421. https://doi.org/10.1111/j.1365-2605.2011.01163.x.

    • Search Google Scholar
    • Export Citation
  • 15.

    Passariello CL , Zini M , Nassi PA , Pignatti C , Stefanelli C . Upregulation of SIRT1 deacetylase in phenylephrine-treated cardiomyoblasts. Biochem Biophys Res Commun 2011; 407(3): 512516. https://doi.org/10.1016/j.bbrc.2011.03.049.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lee WS , Kim J . Insulin-like growth factor-1 signaling in cardiac aging. Biochim Biophys Acta Mol Basis Dis 2018; 1864(5 Pt B): 19311938. https://doi.org/10.1016/j.bbadis.2017.08.029.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Li Q , Wu S , Li SY , Lopez FL , Du M , Kajstura J , et al. Cardiac-specific overexpression of insulin-like growth factor 1 attenuates aging-associated cardiac diastolic contractile dysfunction and protein damage. Am J Physiol Heart Circ Physiol 2007; 292(3): H1398H1403. https://doi.org/10.1152/ajpheart.01036.2006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Vinciguerra M , Santini MP , Claycomb WC , Ladurner AG , Rosenthal N . Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. Aging (Albany NY) 2009; 2(1): 4362. https://doi.org/10.18632/aging.100107.

    • Search Google Scholar
    • Export Citation
  • 19.

    Vinciguerra M , Santini MP , Martinez C , Pazienza V , Claycomb WC , Giuliani A , et al. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 2012; 11(1): 139149. https://doi.org/10.1111/j.1474-9726.2011.00766.x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Song CL , Liu B , Diao HY , Shi YF , Zhang JC , Li YX , et al. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget 2016; 7(26): 3974039757. https://doi.org/10.18632/oncotarget.9240.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bolasco G , Calogero R , Carrara M , Banchaabouchi MA , Bilbao D , Mazzoccoli G , et al. Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice. Aging (Albany NY) 2012; 4(6): 402416. https://doi.org/10.18632/aging.100464.

    • Search Google Scholar
    • Export Citation
  • 22.

    Noren Hooten N , Evans MK . Techniques to induce and quantify cellular senescence. J Vis Exp 2017(123): e55533. https://doi.org/10.3791/55533.

  • 23.

    Livak KJ , Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 402408. https://doi.org/10.1006/meth.2001.1262.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Shen J , Xie Y , Liu Z , Zhang S , Wang Y , Jia L , et al. Increased myocardial stiffness activates cardiac microvascular endothelial cell via VEGF paracrine signaling in cardiac hypertrophy. J Mol Cell Cardiol 2018; 122: 140151. https://doi.org/10.1016/j.yjmcc.2018.08.014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tomita-Mitchell A , Stamm KD , Mahnke DK , Kim MS , Hidestrand PM , Liang HL , et al. Impact of MYH6 variants in hypoplastic left heart syndrome. Physiol Genomics 2016; 48(12): 912921. https://doi.org/10.1152/physiolgenomics.00091.2016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cai H , Li B , Bai A , Huang J , Zhan Y , Sun N , et al. Establishing a new human hypertrophic cardiomyopathy-specific model using human embryonic stem cells. Exp Cell Res 2020; 387(1): 111736. https://doi.org/10.1016/j.yexcr.2019.111736.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Luo G , Jian Z , Zhu Y , Zhu Y , Chen B , Ma R , et al. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med 2019; 43(5): 20332043. https://doi.org/10.3892/ijmm.2019.4125.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Miyoshi N , Oubrahim H , Chock PB , Stadtman ER . Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Natl Acad Sci U S A 2006; 103(6): 17271731. https://doi.org/10.1073/pnas.0510346103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Zhou Y , Dong Y , Xu QG , Zhu SY , Tian SL , Huo JJ , et al. Mussel oligopeptides protect human fibroblasts from hydrogen peroxide (H2O2)-induced premature senescence. Arch Gerontol Geriatr 2014; 58(2): 293299. https://doi.org/10.1016/j.archger.2013.10.005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Shimizu I , Minamino T . Cellular senescence in cardiac diseases. J Cardiol 2019; 74(4): 313319. https://doi.org/10.1016/j.jjcc.2019.05.002.

  • 31.

    Milanovic M , Fan DNY , Belenki D , Dabritz JHM , Zhao Z , Yu Y , et al. Senescence-associated reprogramming promotes cancer stemness. Nature 2018; 553(7686): 96100. https://doi.org/10.1038/nature25167.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Goodale T , Sadhu A , Petak S , Robbins R . Testosterone and the heart. Methodist Debakey Cardiovasc J 2017; 13(2): 6872. https://doi.org/10.14797/mdcj-13-2-68.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Stern S , Behar S , Gottlieb S . Cardiology patient pages. Aging and diseases of the heart. Circulation 2003; 108(14): e99e101. https://doi.org/10.1161/01.CIR.0000086898.96021.B9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Tsametis CP , Isidori AM . Testosterone replacement therapy: for whom, when and how? Metabolism. 2018; 86: 6978. https://doi.org/10.1016/j.metabol.2018.03.007.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Yabluchanskiy A , Tsitouras PD . Is testosterone replacement therapy in older men effective and safe? Drugs Aging. 2019; 36(11): 981989. https://doi.org/10.1007/s40266-019-00716-2.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Miah S , Tharakan T , Gallagher KA , Shah TT , Winkler M , Jayasena CN , et al. The effects of testosterone replacement therapy on the prostate: a clinical perspective [version 1; peer review: 2 approved]. F1000Res 2019; 8(F1000 Faculty Rev): 217. https://doi.org/10.12688/f1000research.16497.1.

    • Search Google Scholar
    • Export Citation
  • 37.

    Hsu SC , Huang SM , Lin SH , Ka SM , Chen A , Shih MF , et al. Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway. Biochem J 2014; 464(2): 221229. https://doi.org/10.1042/BJ20140739.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Chen YQ , Zhou HM , Chen FF , Liu YP , Han L , Song M , et al. Testosterone ameliorates vascular aging via the Gas6/Axl signaling pathway. Aging (Albany NY) 2020; 12(16): 1611116125. https://doi.org/10.18632/aging.103584.

    • Search Google Scholar
    • Export Citation
  • 39.

    Chen YQ , Zhao J , Jin CW , Li YH , Tang MX , Wang ZH , et al. Testosterone delays vascular smooth muscle cell senescence and inhibits collagen synthesis via the Gas6/Axl signaling pathway. Age (Dordr) 2016; 38(3): 60. https://doi.org/10.1007/s11357-016-9910-5.

    • Search Google Scholar
    • Export Citation
  • 40.

    Alves-Fernandes DK , Jasiulionis MG . The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci 2019; 20(13): 3153. https://doi.org/10.3390/ijms20133153.

    • Search Google Scholar
    • Export Citation
  • 41.

    Park S , Shin J , Bae J , Han D , Park SR , Shin J , et al. SIRT1 alleviates LPS-induced IL-1beta production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells 2020; 9(3): 728. https://doi.org/10.3390/cells9030728.

    • Search Google Scholar
    • Export Citation
  • 42.

    Xia N , Daiber A , Forstermann U , Li H . Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 2017; 174(12): 16331646. https://doi.org/10.1111/bph.13492.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hennebry A , Oldham J , Shavlakadze T , Grounds MD , Sheard P , Fiorotto ML , et al. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. J Endocrinol 2017; 234(2): 187200. https://doi.org/10.1530/JOE-17-0032.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Obradovic M , Zafirovic S , Soskic S , Stanimirovic J , Trpkovic A , Jevremovic D , et al. Effects of IGF-1 on the cardiovascular system. Curr Pharm Des 2019; 25(35): 37153725. https://doi.org/10.2174/1381612825666191106091507.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Fontana L , Vinciguerra M , Longo VD . Growth factors, nutrient signaling, and cardiovascular aging. Circ Res 2012; 110(8): 11391150. https://doi.org/10.1161/CIRCRESAHA.111.246470.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Vinciguerra M , Musaro A , Rosenthal N . Regulation of muscle atrophy in aging and disease. Adv Exp Med Biol 2010; 694: 211233. https://doi.org/10.1007/978-1-4419-7002-2_15.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Schiaffino S , Mammucari C . Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 2011; 1(1): 4. https://doi.org/10.1186/2044-5040-1-4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hori YS , Kuno A , Hosoda R , Horio Y . Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One 2013; 8(9): e73875. https://doi.org/10.1371/journal.pone.0073875.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Lin Z , Fang D . The roles of SIRT1 in cancer. Genes Cancer 2013; 4(3–4): 97104. https://doi.org/10.1177/1947601912475079.

  • 50.

    Chuang PY , Dai Y , Liu R , He H , Kretzler M , Jim B , et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One 2011; 6(8): e23566. https://doi.org/10.1371/journal.pone.0023566.

    • Search Google Scholar
    • Export Citation
  • 51.

    Orimo M , Minamino T , Miyauchi H , Tateno K , Okada S , Moriya J , et al. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol 2009; 29(6): 889894. https://doi.org/10.1161/ATVBAHA.109.185694.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Kume S , Kitada M , Kanasaki K , Maegawa H , Koya D . Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Arch Pharm Res 2013; 36(2): 230236. https://doi.org/10.1007/s12272-013-0019-4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Webb CM , Collins P . Role of testosterone in the treatment of cardiovascular disease. Eur Cardiol 2017; 12(2): 8387. https://doi.org/10.15420/ecr.2017:21:1.

    • Search Google Scholar
    • Export Citation
  • 54.

    Cheetham TC , VanDenEeden SK , Jacobsen SJ . Testosterone replacement therapy and cardiovascular risk-A closer look to additional parameters. JAMA Intern Med 2017; 177(9): 13931394. https://doi.org/10.1001/jamainternmed.2017.3890.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Corona GG , Rastrelli G , Maseroli E , Sforza A , Maggi M . Testosterone replacement therapy and cardiovascular risk: a review. World J Mens Health 2015; 33(3): 130142. https://doi.org/10.5534/wjmh.2015.33.3.130.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 141 0 0
Apr 2024 24 1 2
May 2024 81 0 0
Jun 2024 72 0 0
Jul 2024 87 0 0
Aug 2024 85 0 0
Sep 2024 27 0 0