To investigate the role of IGF1 and SIRT1 pathways in protection of hydrogen peroxide (H2O2)-induced aging in H9c2 rat cardiomyocyte cells by testosterone.
The cells were treated with testosterone or up- or down-regulated for the IGF1 and SIRT1 genes and assessed for apoptosis, aging and expression of relevant genes.
Aging was induced and the expression of SIRT1 and IGF1 was down-regulated after H2O2 treatment in H9c2 cells. The aging was attenuated in a dose-dependent manner after the cells were exposed to testosterone. Down-regulation of SIRT1 and IGF1expression was offset in the H2O2-treated cells co-treated with testosterone. Up- or down-regulation of IGF1 significantly reduced or increased senescence-associated beta-galactosidase (SA-β-gal) cells and the ROS level, respectively. In addition, SIRT1 expression was regulated by IGF1 expression. Down- or up-regulation of SIRT1 significantly decreased or increased the IGF1 levels, respectively. Furthermore, after IGF1 and SIRT1 knockdown, testosterone did not protect the cells from senescence. Testosterone, and overexpression of IGF1 and SIRT1 also up-regulated the expression of the fetal genes SERCA2 and MYH6 and down-regulated the expression of the ACTA1 and MYH7 genes.
Our data indicate that testosterone can attenuate cardiomyocyte aging induced by H2O2 and up-regulate SIRT1 and IGF1. The IGF1and SIRT1 pathway may be new targets to treat heart aging and heart failure.
Ambrosy AP , Fonarow GC , Butler J , Chioncel O , Greene SJ , Vaduganathan M , et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 2014; 63(12): 1123–1133. https://doi.org/10.1016/j.jacc.2013.11.053.
Ponikowski P , Anker SD , AlHabib KF , Cowie MR , Force TL , Hu S , et al. Heart failure: preventing disease and death worldwide. ESC Heart Fail 2014; 1(1): 4–25. https://doi.org/10.1002/ehf2.12005.
Conrad N , Judge A , Tran J , Mohseni H , Hedgecott D , Crespillo AP , et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 2018; 391(10120): 572–580. https://doi.org/10.1016/S0140-6736(17)32520-5.
Blecker S , Paul M , Taksler G , Ogedegbe G , Katz S . Heart failure-associated hospitalizations in the United States. J Am Coll Cardiol 2013; 61(12): 1259–1267. https://doi.org/10.1016/j.jacc.2012.12.038.
Sheth A , Bhandari R , Patel H , Morin DP , Dominic P . Google search activity and heart failure: analysis of the US population's interest in heart failure and its correlation with heart failure-associated mortality. J Card Fail 2021; 27(1): 123–125. https://doi.org/10.1016/j.cardfail.2020.11.005.
Spater D , Hansson EM , Zangi L , Chien KR . How to make a cardiomyocyte. Development 2014; 141(23): 4418–4431. https://doi.org/10.1242/dev.091538.
Pereira RM , Mekary RA , da Cruz Rodrigues KC , Anaruma CP , Ropelle ER , da Silva ASR , et al. Protective molecular mechanisms of clusterin against apoptosis in cardiomyocytes. Heart Fail Rev 2018; 23(1): 123–129. https://doi.org/10.1007/s10741-017-9654-z.
Tang X , Li PH , Chen HZ . Cardiomyocyte senescence and cellular communications within myocardial microenvironments. Front Endocrinol (Lausanne) 2020; 11: 280. https://doi.org/10.3389/fendo.2020.00280.
Kloner RA , Carson C, 3rd , Dobs A , Kopecky S , Mohler ER, 3rd . Testosterone and cardiovascular disease. J Am Coll Cardiol 2016; 67(5): 545–557. https://doi.org/10.1016/j.jacc.2015.12.005.
Kaufman JM , Lapauw B , Mahmoud A , T'Sjoen G , Huhtaniemi IT . Aging and the male reproductive system. Endocr Rev 2019; 40(4): 906–972. https://doi.org/10.1210/er.2018-00178.
Seilanov AS , Kondrashova TV , Konev VV . Change in the replicative synthesis of DNA and in respiration during gamma–irradiation of cultured human lymphocytes. Radiobiologiia 1988; 28(5): 607–610.
Tao J , Liu X , Bai W . Testosterone supplementation in patients with chronic heart failure: a meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2020; 11: 110. https://doi.org/10.3389/fendo.2020.00110.
Iellamo F , Volterrani M , Caminiti G , Karam R , Massaro R , Fini M , et al. Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study. J Am Coll Cardiol 2010; 56(16): 1310–1316. https://doi.org/10.1016/j.jacc.2010.03.090.
Schwartz JB , Volterrani M , Caminiti G , Marazzi G , Fini M , Rosano GM , et al. Effects of testosterone on the Q-T interval in older men and older women with chronic heart failure. Int J Androl 2011; 34(5 Pt 2): e415–e421. https://doi.org/10.1111/j.1365-2605.2011.01163.x.
Passariello CL , Zini M , Nassi PA , Pignatti C , Stefanelli C . Upregulation of SIRT1 deacetylase in phenylephrine-treated cardiomyoblasts. Biochem Biophys Res Commun 2011; 407(3): 512–516. https://doi.org/10.1016/j.bbrc.2011.03.049.
Lee WS , Kim J . Insulin-like growth factor-1 signaling in cardiac aging. Biochim Biophys Acta Mol Basis Dis 2018; 1864(5 Pt B): 1931–1938. https://doi.org/10.1016/j.bbadis.2017.08.029.
Li Q , Wu S , Li SY , Lopez FL , Du M , Kajstura J , et al. Cardiac-specific overexpression of insulin-like growth factor 1 attenuates aging-associated cardiac diastolic contractile dysfunction and protein damage. Am J Physiol Heart Circ Physiol 2007; 292(3): H1398–H1403. https://doi.org/10.1152/ajpheart.01036.2006.
Vinciguerra M , Santini MP , Claycomb WC , Ladurner AG , Rosenthal N . Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. Aging (Albany NY) 2009; 2(1): 43–62. https://doi.org/10.18632/aging.100107.
Vinciguerra M , Santini MP , Martinez C , Pazienza V , Claycomb WC , Giuliani A , et al. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 2012; 11(1): 139–149. https://doi.org/10.1111/j.1474-9726.2011.00766.x.
Song CL , Liu B , Diao HY , Shi YF , Zhang JC , Li YX , et al. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget 2016; 7(26): 39740–39757. https://doi.org/10.18632/oncotarget.9240.
Bolasco G , Calogero R , Carrara M , Banchaabouchi MA , Bilbao D , Mazzoccoli G , et al. Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice. Aging (Albany NY) 2012; 4(6): 402–416. https://doi.org/10.18632/aging.100464.
Noren Hooten N , Evans MK . Techniques to induce and quantify cellular senescence. J Vis Exp 2017(123): e55533. https://doi.org/10.3791/55533.
Livak KJ , Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 402–408. https://doi.org/10.1006/meth.2001.1262.
Shen J , Xie Y , Liu Z , Zhang S , Wang Y , Jia L , et al. Increased myocardial stiffness activates cardiac microvascular endothelial cell via VEGF paracrine signaling in cardiac hypertrophy. J Mol Cell Cardiol 2018; 122: 140–151. https://doi.org/10.1016/j.yjmcc.2018.08.014.
Tomita-Mitchell A , Stamm KD , Mahnke DK , Kim MS , Hidestrand PM , Liang HL , et al. Impact of MYH6 variants in hypoplastic left heart syndrome. Physiol Genomics 2016; 48(12): 912–921. https://doi.org/10.1152/physiolgenomics.00091.2016.
Cai H , Li B , Bai A , Huang J , Zhan Y , Sun N , et al. Establishing a new human hypertrophic cardiomyopathy-specific model using human embryonic stem cells. Exp Cell Res 2020; 387(1): 111736. https://doi.org/10.1016/j.yexcr.2019.111736.
Luo G , Jian Z , Zhu Y , Zhu Y , Chen B , Ma R , et al. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med 2019; 43(5): 2033–2043. https://doi.org/10.3892/ijmm.2019.4125.
Miyoshi N , Oubrahim H , Chock PB , Stadtman ER . Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Natl Acad Sci U S A 2006; 103(6): 1727–1731. https://doi.org/10.1073/pnas.0510346103.
Zhou Y , Dong Y , Xu QG , Zhu SY , Tian SL , Huo JJ , et al. Mussel oligopeptides protect human fibroblasts from hydrogen peroxide (H2O2)-induced premature senescence. Arch Gerontol Geriatr 2014; 58(2): 293–299. https://doi.org/10.1016/j.archger.2013.10.005.
Shimizu I , Minamino T . Cellular senescence in cardiac diseases. J Cardiol 2019; 74(4): 313–319. https://doi.org/10.1016/j.jjcc.2019.05.002.
Milanovic M , Fan DNY , Belenki D , Dabritz JHM , Zhao Z , Yu Y , et al. Senescence-associated reprogramming promotes cancer stemness. Nature 2018; 553(7686): 96–100. https://doi.org/10.1038/nature25167.
Goodale T , Sadhu A , Petak S , Robbins R . Testosterone and the heart. Methodist Debakey Cardiovasc J 2017; 13(2): 68–72. https://doi.org/10.14797/mdcj-13-2-68.
Stern S , Behar S , Gottlieb S . Cardiology patient pages. Aging and diseases of the heart. Circulation 2003; 108(14): e99–e101. https://doi.org/10.1161/01.CIR.0000086898.96021.B9.
Tsametis CP , Isidori AM . Testosterone replacement therapy: for whom, when and how? Metabolism. 2018; 86: 69–78. https://doi.org/10.1016/j.metabol.2018.03.007.
Yabluchanskiy A , Tsitouras PD . Is testosterone replacement therapy in older men effective and safe? Drugs Aging. 2019; 36(11): 981–989. https://doi.org/10.1007/s40266-019-00716-2.
Miah S , Tharakan T , Gallagher KA , Shah TT , Winkler M , Jayasena CN , et al. The effects of testosterone replacement therapy on the prostate: a clinical perspective [version 1; peer review: 2 approved]. F1000Res 2019; 8(F1000 Faculty Rev): 217. https://doi.org/10.12688/f1000research.16497.1.
Hsu SC , Huang SM , Lin SH , Ka SM , Chen A , Shih MF , et al. Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway. Biochem J 2014; 464(2): 221–229. https://doi.org/10.1042/BJ20140739.
Chen YQ , Zhou HM , Chen FF , Liu YP , Han L , Song M , et al. Testosterone ameliorates vascular aging via the Gas6/Axl signaling pathway. Aging (Albany NY) 2020; 12(16): 16111–16125. https://doi.org/10.18632/aging.103584.
Chen YQ , Zhao J , Jin CW , Li YH , Tang MX , Wang ZH , et al. Testosterone delays vascular smooth muscle cell senescence and inhibits collagen synthesis via the Gas6/Axl signaling pathway. Age (Dordr) 2016; 38(3): 60. https://doi.org/10.1007/s11357-016-9910-5.
Alves-Fernandes DK , Jasiulionis MG . The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci 2019; 20(13): 3153. https://doi.org/10.3390/ijms20133153.
Park S , Shin J , Bae J , Han D , Park SR , Shin J , et al. SIRT1 alleviates LPS-induced IL-1beta production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells 2020; 9(3): 728. https://doi.org/10.3390/cells9030728.
Xia N , Daiber A , Forstermann U , Li H . Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 2017; 174(12): 1633–1646. https://doi.org/10.1111/bph.13492.
Hennebry A , Oldham J , Shavlakadze T , Grounds MD , Sheard P , Fiorotto ML , et al. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. J Endocrinol 2017; 234(2): 187–200. https://doi.org/10.1530/JOE-17-0032.
Obradovic M , Zafirovic S , Soskic S , Stanimirovic J , Trpkovic A , Jevremovic D , et al. Effects of IGF-1 on the cardiovascular system. Curr Pharm Des 2019; 25(35): 3715–3725. https://doi.org/10.2174/1381612825666191106091507.
Fontana L , Vinciguerra M , Longo VD . Growth factors, nutrient signaling, and cardiovascular aging. Circ Res 2012; 110(8): 1139–1150. https://doi.org/10.1161/CIRCRESAHA.111.246470.
Vinciguerra M , Musaro A , Rosenthal N . Regulation of muscle atrophy in aging and disease. Adv Exp Med Biol 2010; 694: 211–233. https://doi.org/10.1007/978-1-4419-7002-2_15.
Schiaffino S , Mammucari C . Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 2011; 1(1): 4. https://doi.org/10.1186/2044-5040-1-4.
Hori YS , Kuno A , Hosoda R , Horio Y . Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One 2013; 8(9): e73875. https://doi.org/10.1371/journal.pone.0073875.
Lin Z , Fang D . The roles of SIRT1 in cancer. Genes Cancer 2013; 4(3–4): 97–104. https://doi.org/10.1177/1947601912475079.
Chuang PY , Dai Y , Liu R , He H , Kretzler M , Jim B , et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One 2011; 6(8): e23566. https://doi.org/10.1371/journal.pone.0023566.
Orimo M , Minamino T , Miyauchi H , Tateno K , Okada S , Moriya J , et al. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol 2009; 29(6): 889–894. https://doi.org/10.1161/ATVBAHA.109.185694.
Kume S , Kitada M , Kanasaki K , Maegawa H , Koya D . Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Arch Pharm Res 2013; 36(2): 230–236. https://doi.org/10.1007/s12272-013-0019-4.
Webb CM , Collins P . Role of testosterone in the treatment of cardiovascular disease. Eur Cardiol 2017; 12(2): 83–87. https://doi.org/10.15420/ecr.2017:21:1.
Cheetham TC , VanDenEeden SK , Jacobsen SJ . Testosterone replacement therapy and cardiovascular risk-A closer look to additional parameters. JAMA Intern Med 2017; 177(9): 1393–1394. https://doi.org/10.1001/jamainternmed.2017.3890.
Corona GG , Rastrelli G , Maseroli E , Sforza A , Maggi M . Testosterone replacement therapy and cardiovascular risk: a review. World J Mens Health 2015; 33(3): 130–142. https://doi.org/10.5534/wjmh.2015.33.3.130.