Hypothermic conditions enhance the incidence of cardiovascular diseases due to increased blood pressure. Cold-induced adaptive thermogenesis increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of intermittent cold exposure on the regulators of cardiac mitochondrial biogenesis, function, and its regulation by SIRT-3. Intermittent cold exposed mice hearts showed normal histopathology with increased mitochondrial antioxidant and metabolic function, as evidenced by an increase in the activity and expression of MnSOD and SDH. A substantial increase in mitochondrial DNA copy number and increase in the expression of PGC-1α and its downstream targets NRF-1 and Tfam indicated the possibility of enhanced cardiac mitochondrial biogenesis and function on intermittent cold exposure. Increased mitochondrial SIRT-3 level and decreased total protein lysine acetylation indicate increased sirtuin activity in cold exposed mice hearts. Ex vivo cold mimic using norepinephrine showed a significant increase in PGC-1α, NRF-1, and Tfam levels. AGK-7, a SIRT-3 inhibitor, reversed the norepinephrine-induced upregulation of PGC-1α and NRF-1, indicating the role of SIRT-3 on the production of PGC-1α and NRF-1. Inhibition of PKA with KT5720 in norepinephrine treated cardiac tissue slices indicates the role of PKA in regulating the production of PGC-1α and NRF-1. In conclusion, intermittent cold exposure upregulated the regulators of mitochondrial biogenesis and function through PKA and SIRT-3 mediated pathway. Our results emphasize the role of intermittent cold-induced adaptive thermogenesis in overcoming chronic cold-induced cardiac damage.
Sun Z. Cardiovascular responses to cold exposure. Front Biosci (Elite Ed) 2010; 2(2): 495–503. https://doi.org/10.2741/e108.
Gaskill BN, Gordon CJ, Pajor EA, Lucas JR, Davis JK, Garner JP. Heat or insulation: behavioral titration of mouse preference for warmth or access to a nest. PLoS One 2012; 7(3): e32799. https://doi.org/10.1371/journal.pone.0032799.
IUPS Thermal Commission. Glossary of terms for thermal physiology. Third edition. Revised by the commission for thermal physiology of the international union of physiological sciences (IUPS thermal commission). Jpn J Physiol 2001; 51(2): 245–280.
Ootsuka Y, de Menezes RC, Zaretsky DV, Alimoradian A, Hunt J, Stefanidis A, et al. Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle. Neuroscience 2009; 164(2): 849–861. https://doi.org/10.1016/j.neuroscience.2009.08.013.
Sokoloff G, Kirby RF, Blumberg MS. Further evidence that BAT thermogenesis modulates cardiac rate in infant rats. Am J Physiol Regul Integr Comp Physiol 1998; 274(6): R1712–R1717. https://doi.org/10.1152/ajpregu.1998.274.6.r1712.
Rimbaud S, Garnier A, Ventura-Clapier R. Mitochondrial biogenesis in cardiac pathophysiology. Pharmacol Rep 2009; 61(1): 131–138. https://doi.org/10.1016/s1734-1140(09)70015-5.
Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 2009; 71: 177–203. https://doi.org/10.1146/annurev.physiol.010908.163119.
Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc Res 2008; 79(2): 208–217. https://doi.org/10.1093/cvr/cvn098.
Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 1994; 91(4): 1309–1313. https://doi.org/10.1073/pnas.91.4.1309.
Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004; 18(4): 357–368. https://doi.org/10.1101/gad.1177604.
Finck BN, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 2007; 115(19): 2540–2548. https://doi.org/10.1161/circulationaha.107.670588.
Lim CJ, Lee Y-M, Kang SG, Lim HW, Shin K-O, Jeong SK, et al. Aquatide activation of SIRT1 reduces cellular senescence through a SIRT1-FOXO1-autophagy axis. Biomol Ther (Seoul) 2017; 25(5): 511–518. https://doi.org/10.4062/biomolther.2017.119.
Chung N, Park J, Lim K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. J Exerc Nutr Biochem 2017; 21(2): 39–47. https://doi.org/10.20463/jenb.2017.0020.
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119(9): 2758–2771. https://doi.org/10.1172/JCI39162.
Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 2012; 107(4): 273. https://doi.org/10.1007/s00395-012-0273-5.
Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105(38): 14447–14452. https://doi.org/10.1073/pnas.0803790105.
Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 2010; 285(5): 3133–3144. https://doi.org/10.1074/jbc.M109.077271.
Murugasamy K, Munjal A, Sundaresan NR. Emerging roles of SIRT3 in cardiac metabolism. Front Cardiovasc Med 2022; 9: 850340. https://doi.org/10.3389/fcvm.2022.850340.
Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 2010; 5(7): e11707. https://doi.org/10.1371/journal.pone.0011707.
Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280(14): 13560–13567. https://doi.org/10.1074/jbc.m414670200.
Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G Immunochemistry 1971; 8(9): 871–874. https://doi.org/10.1016/0019-2791(71)90454-x.
Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance. Appl Microbiol Biotechnol 2013; 97(10): 4563–4576. https://doi.org/10.1007/s00253-012-4672-1.
Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265–275. https://doi.org/10.1016/s0021-9258(19)52451-6.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680–685. https://doi.org/10.1038/227680a0.
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76(9): 4350–4354. https://doi.org/10.1073/pnas.76.9.4350.
Slater EC, Borner WD, Jr. The effect of fluoride on the succinic oxidase system. Biochem J 1952; 52(2): 185–196. https://doi.org/10.1042/bj0520185.
Rooney JP, Ryde IT, Sanders LH, Howlett EH, Colton MD, Germ KE, et al. PCR based determination of mitochondrial DNA copy number in multiple species. In: Palmeira C, Rolo A, editors. Mitochondrial regulation. Methods in molecular biology. 1241. New York, USA: Humana Press Inc.; 2015. pp. 23–38. https://doi.org/10.1007/978-1-4939-1875-1_3.
Watson SA, Scigliano M, Bardi I, Ascione R, Terracciano CM, Perbellini F. Preparation of viable adult ventricular myocardial slices from large and small mammals. Nat Protoc 2017; 12(12): 2623–2639. https://doi.org/10.1038/nprot.2017.139.
Papanek PE, Wood CE, Fregly MJ. Role of the sympathetic nervous system in cold-induced hypertension in rats. J Appl Physiol 1991; 71(1): 300–306. https://doi.org/10.1152/jappl.1991.71.1.300.
Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 2017; 14(4): 238–250. https://doi.org/10.1038/nrcardio.2016.203.
Zhang X, Zhang D, Xiang L, Wang Q. MnSOD functions as a thermoreceptor activated by low temperature. J Inorg Biochem 2022; 229: 111745. https://doi.org/10.1016/j.jinorgbio.2022.111745.
Neri M, Cerretani D, Fiaschi AI, Laghi PF, Lazzerini PE, Maffione AB, et al. Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J Cell Mol Med 2007; 11(1): 156–170. https://doi.org/10.1111/j.1582-4934.2007.00009.x.
Hannon JP. Effect of prolonged cold exposure on components of the electron transport system. Am J Physiol Legacy Cont 1960; 198(4): 740–744. https://doi.org/10.1152/ajplegacy.1960.198.4.740.
Lemecha M, Morino K, Imamura T, Iwasaki H, Ohashi N, Ida S, et al. MiR-494-3p regulates mitochondrial biogenesis and thermogenesis through PGC1-α signalling in beige adipocytes. Sci Rep 2018; 8(1): 15096. https://doi.org/10.1038/s41598-018-33438-3.
Venditti P, Napolitano G, Barone D, Di Meo S. “Cold training” affects rat liver responses to continuous cold exposure. Free Radic Biol Med 2016; 93: 23–31. https://doi.org/10.1016/j.freeradbiomed.2016.01.018.
Torrens-Mas M, Hernández-López R, Pons D-G, Roca P, Oliver J, Sastre-Serra J. Sirtuin 3 silencing impairs mitochondrial biogenesis and metabolism in colon cancer cells. Am J Physiol Cell Physiol 2019; 317(2): C398–C404. https://doi.org/10.1152/ajpcell.00112.2019.
Perović A, Unić A, Dumić J. Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress? Biochem Med (Zagreb) 2014; 24(2): 235–247. https://doi.org/10.11613/BM.2014.026.
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92(6): 829–839. https://doi.org/10.1016/s0092-8674(00)81410-5.
Wicksteed B, Dickson LM. PKA differentially regulates adipose depots to control energy expenditure. Endocrinology 2017; 158(3): 464–466. https://doi.org/10.1210/en.2017-00038.
Silva JE. Thyroid hormone and the energetic cost of keeping body temperature. Biosci Rep 2005; 25(3–4): 129–148. https://doi.org/10.1007/s10540-005-2882-9.