Authors:
Mithra Sudha Mohan Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Mithra Sudha Mohan in
Current site
Google Scholar
PubMed
Close
,
Aswani Sukumaran Sreedevi Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Aswani Sukumaran Sreedevi in
Current site
Google Scholar
PubMed
Close
,
Aparna Nandakumaran Sakunthala Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Aparna Nandakumaran Sakunthala in
Current site
Google Scholar
PubMed
Close
,
Puthenpura T. Boban Department of Biochemistry, Government College, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Puthenpura T. Boban in
Current site
Google Scholar
PubMed
Close
,
Perumana R. Sudhakaran Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Perumana R. Sudhakaran in
Current site
Google Scholar
PubMed
Close
, and
Saja Kamalamma Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Saja Kamalamma in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2902-4984
Restricted access

Abstract

Hypothermic conditions enhance the incidence of cardiovascular diseases due to increased blood pressure. Cold-induced adaptive thermogenesis increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of intermittent cold exposure on the regulators of cardiac mitochondrial biogenesis, function, and its regulation by SIRT-3. Intermittent cold exposed mice hearts showed normal histopathology with increased mitochondrial antioxidant and metabolic function, as evidenced by an increase in the activity and expression of MnSOD and SDH. A substantial increase in mitochondrial DNA copy number and increase in the expression of PGC-1α and its downstream targets NRF-1 and Tfam indicated the possibility of enhanced cardiac mitochondrial biogenesis and function on intermittent cold exposure. Increased mitochondrial SIRT-3 level and decreased total protein lysine acetylation indicate increased sirtuin activity in cold exposed mice hearts. Ex vivo cold mimic using norepinephrine showed a significant increase in PGC-1α, NRF-1, and Tfam levels. AGK-7, a SIRT-3 inhibitor, reversed the norepinephrine-induced upregulation of PGC-1α and NRF-1, indicating the role of SIRT-3 on the production of PGC-1α and NRF-1. Inhibition of PKA with KT5720 in norepinephrine treated cardiac tissue slices indicates the role of PKA in regulating the production of PGC-1α and NRF-1. In conclusion, intermittent cold exposure upregulated the regulators of mitochondrial biogenesis and function through PKA and SIRT-3 mediated pathway. Our results emphasize the role of intermittent cold-induced adaptive thermogenesis in overcoming chronic cold-induced cardiac damage.

  • 1.

    Sun Z. Cardiovascular responses to cold exposure. Front Biosci (Elite Ed) 2010; 2(2): 495503. https://doi.org/10.2741/e108.

  • 2.

    Gaskill BN, Gordon CJ, Pajor EA, Lucas JR, Davis JK, Garner JP. Heat or insulation: behavioral titration of mouse preference for warmth or access to a nest. PLoS One 2012; 7(3): e32799. https://doi.org/10.1371/journal.pone.0032799.

    • Search Google Scholar
    • Export Citation
  • 3.

    IUPS Thermal Commission. Glossary of terms for thermal physiology. Third edition. Revised by the commission for thermal physiology of the international union of physiological sciences (IUPS thermal commission). Jpn J Physiol 2001; 51(2): 245280.

    • Search Google Scholar
    • Export Citation
  • 4.

    Ootsuka Y, de Menezes RC, Zaretsky DV, Alimoradian A, Hunt J, Stefanidis A, et al. Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle. Neuroscience 2009; 164(2): 849861. https://doi.org/10.1016/j.neuroscience.2009.08.013.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sokoloff G, Kirby RF, Blumberg MS. Further evidence that BAT thermogenesis modulates cardiac rate in infant rats. Am J Physiol Regul Integr Comp Physiol 1998; 274(6): R1712R1717. https://doi.org/10.1152/ajpregu.1998.274.6.r1712.

    • Search Google Scholar
    • Export Citation
  • 6.

    Rimbaud S, Garnier A, Ventura-Clapier R. Mitochondrial biogenesis in cardiac pathophysiology. Pharmacol Rep 2009; 61(1): 131138. https://doi.org/10.1016/s1734-1140(09)70015-5.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 2009; 71: 177203. https://doi.org/10.1146/annurev.physiol.010908.163119.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc Res 2008; 79(2): 208217. https://doi.org/10.1093/cvr/cvn098.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 1994; 91(4): 13091313. https://doi.org/10.1073/pnas.91.4.1309.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004; 18(4): 357368. https://doi.org/10.1101/gad.1177604.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Finck BN, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 2007; 115(19): 25402548. https://doi.org/10.1161/circulationaha.107.670588.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lim CJ, Lee Y-M, Kang SG, Lim HW, Shin K-O, Jeong SK, et al. Aquatide activation of SIRT1 reduces cellular senescence through a SIRT1-FOXO1-autophagy axis. Biomol Ther (Seoul) 2017; 25(5): 511518. https://doi.org/10.4062/biomolther.2017.119.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chung N, Park J, Lim K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. J Exerc Nutr Biochem 2017; 21(2): 3947. https://doi.org/10.20463/jenb.2017.0020.

    • Search Google Scholar
    • Export Citation
  • 14.

    Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119(9): 27582771. https://doi.org/10.1172/JCI39162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 2012; 107(4): 273. https://doi.org/10.1007/s00395-012-0273-5.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105(38): 1444714452. https://doi.org/10.1073/pnas.0803790105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 2010; 285(5): 31333144. https://doi.org/10.1074/jbc.M109.077271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Murugasamy K, Munjal A, Sundaresan NR. Emerging roles of SIRT3 in cardiac metabolism. Front Cardiovasc Med 2022; 9: 850340. https://doi.org/10.3389/fcvm.2022.850340.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 2010; 5(7): e11707. https://doi.org/10.1371/journal.pone.0011707.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280(14): 1356013567. https://doi.org/10.1074/jbc.m414670200.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G Immunochemistry 1971; 8(9): 871874. https://doi.org/10.1016/0019-2791(71)90454-x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance. Appl Microbiol Biotechnol 2013; 97(10): 45634576. https://doi.org/10.1007/s00253-012-4672-1.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265275. https://doi.org/10.1016/s0021-9258(19)52451-6.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680685. https://doi.org/10.1038/227680a0.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76(9): 43504354. https://doi.org/10.1073/pnas.76.9.4350.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Slater EC, Borner WD, Jr. The effect of fluoride on the succinic oxidase system. Biochem J 1952; 52(2): 185196. https://doi.org/10.1042/bj0520185.

  • 27.

    Rooney JP, Ryde IT, Sanders LH, Howlett EH, Colton MD, Germ KE, et al. PCR based determination of mitochondrial DNA copy number in multiple species. In: Palmeira C, Rolo A, editors. Mitochondrial regulation. Methods in molecular biology. 1241. New York, USA: Humana Press Inc.; 2015. pp. 2338. https://doi.org/10.1007/978-1-4939-1875-1_3.

    • Search Google Scholar
    • Export Citation
  • 28.

    Watson SA, Scigliano M, Bardi I, Ascione R, Terracciano CM, Perbellini F. Preparation of viable adult ventricular myocardial slices from large and small mammals. Nat Protoc 2017; 12(12): 26232639. https://doi.org/10.1038/nprot.2017.139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Papanek PE, Wood CE, Fregly MJ. Role of the sympathetic nervous system in cold-induced hypertension in rats. J Appl Physiol 1991; 71(1): 300306. https://doi.org/10.1152/jappl.1991.71.1.300.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 2017; 14(4): 238250. https://doi.org/10.1038/nrcardio.2016.203.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Zhang X, Zhang D, Xiang L, Wang Q. MnSOD functions as a thermoreceptor activated by low temperature. J Inorg Biochem 2022; 229: 111745. https://doi.org/10.1016/j.jinorgbio.2022.111745.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Neri M, Cerretani D, Fiaschi AI, Laghi PF, Lazzerini PE, Maffione AB, et al. Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J Cell Mol Med 2007; 11(1): 156170. https://doi.org/10.1111/j.1582-4934.2007.00009.x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hannon JP. Effect of prolonged cold exposure on components of the electron transport system. Am J Physiol Legacy Cont 1960; 198(4): 740744. https://doi.org/10.1152/ajplegacy.1960.198.4.740.

    • Search Google Scholar
    • Export Citation
  • 34.

    Lemecha M, Morino K, Imamura T, Iwasaki H, Ohashi N, Ida S, et al. MiR-494-3p regulates mitochondrial biogenesis and thermogenesis through PGC1-α signalling in beige adipocytes. Sci Rep 2018; 8(1): 15096. https://doi.org/10.1038/s41598-018-33438-3.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Venditti P, Napolitano G, Barone D, Di Meo S. “Cold training” affects rat liver responses to continuous cold exposure. Free Radic Biol Med 2016; 93: 2331. https://doi.org/10.1016/j.freeradbiomed.2016.01.018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Torrens-Mas M, Hernández-López R, Pons D-G, Roca P, Oliver J, Sastre-Serra J. Sirtuin 3 silencing impairs mitochondrial biogenesis and metabolism in colon cancer cells. Am J Physiol Cell Physiol 2019; 317(2): C398C404. https://doi.org/10.1152/ajpcell.00112.2019.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Perović A, Unić A, Dumić J. Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress? Biochem Med (Zagreb) 2014; 24(2): 235247. https://doi.org/10.11613/BM.2014.026.

    • Search Google Scholar
    • Export Citation
  • 38.

    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92(6): 829839. https://doi.org/10.1016/s0092-8674(00)81410-5.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wicksteed B, Dickson LM. PKA differentially regulates adipose depots to control energy expenditure. Endocrinology 2017; 158(3): 464466. https://doi.org/10.1210/en.2017-00038.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Silva JE. Thyroid hormone and the energetic cost of keeping body temperature. Biosci Rep 2005; 25(3–4): 129148. https://doi.org/10.1007/s10540-005-2882-9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.356
SJR Q rank Q2

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge Effective from 1st Apr 2025:
600 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 129 0 0
Jan 2025 117 0 0
Feb 2025 129 0 0
Mar 2025 179 0 0
Apr 2025 48 2 5
May 2025 20 0 0
Jun 2025 0 0 0