Authors:
Tahereh Komeili–Movahhed Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran

Search for other papers by Tahereh Komeili–Movahhed in
Current site
Google Scholar
PubMed
Close
,
Fatemeh Heidari Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran

Search for other papers by Fatemeh Heidari in
Current site
Google Scholar
PubMed
Close
, and
Azam Moslehi Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran

Search for other papers by Azam Moslehi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1153-1475
Restricted access

Abstract

Purpose

Chlorogenic acid (CA) is a polyphenolic compound, found in many herbs and foods including coffee, berries and potatoes. Anti-inflammatory, anti-oxidant, anti-cancer and anti-apoptotic effects of CA have been proven in many tissues. Testicular inflammation and apoptosis are essential factors in male infertility that could result from endoplasmic reticulum (ER) stress. ER stress leads to unfolding and misfolding of nascent proteins and thereby provokes cellular inflammatory and apoptotic pathways. This study was designed to assess the effects of CA on ER stress-induced testis inflammation and apoptosis.

Methods

To do this, male mice were divided into six groups. The control, vehicle and CA groups received saline, DMSO and 50 mg kg−1 CA. Tunicamycin (TM (was injected to induce ER stress (TM group). In the CA20-TM and CA50-TM groups, 20 mg kg−1 CA and 50 mg kg−1 CA were administered one hour before TM injection. After thirty hours, animals were sacrificed and testes were removed. Hematoxylin & eosin staining, ELISA assay and real-time PCR were performed.

Results

CA administration significantly downregulated gene expression of TNFα, IL6, P53, Bax/Bcl2 ratio and caspase3. It also reduced testis levels of ALP, NF-κB, TNFα and caspse3. Finally, CA relieved structural changes in seminiferous tubules.

Conclusions

This study demonstrated that the positive effects of CA on the attenuation of ER-stress induced inflammation and apoptosis might be due to the inhibition of NF-κB and thereby suppression of inflammatory and apoptotic pathways.

  • 1.

    Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem 2018; 62: 210. https://doi.org/10.1016/j.clinbiochem.2018.03.012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kasman AM, Del Giudice F, Eisenberg ML. New insights to guide patient care: the bidirectional relationship between male infertility and male health. Fertil Steril 2020; 113(3): 46977. https://doi.org/10.1016/j.fertnstert.2020.01.002.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Nna VU, Abu Bakar AB, Ahmad A, Eleazu CO, Mohamed M. Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: combined protective effects of malaysian propolis and metformin. Antioxidants (Basel) 2019; 8(10): 465. https://doi.org/10.3390/antiox8100465.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dutta S, Sengupta P, Slama P, Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int J Mol Sci 2021; 22(18): 10043. https://doi.org/10.3390/ijms221810043.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Zhao J, Wang M, Wang Y, Xu J, Ma C, Tang Y, et al. Endoplasmic reticulum stress promotes blood-testis barrier impairment in mice with busulfan-induced oligospermia through PERK-eIF2α signaling pathway. Toxicology 2022; 473: 153193. https://doi.org/10.1016/j.tox.2022.153193.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hosseini M, Shaygannia E, Rahmani M, Eskandari A, Golsefid AA, Tavalaee M, et al. Endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) occur in a rat varicocele testis model. Oxid Med Cell Longev 2020; 2020: 5909306. https://doi.org/10.1155/2020/5909306.

    • Search Google Scholar
    • Export Citation
  • 7.

    Yang H, Niemeijer M, van de Water B, Beltman JB. ATF6 is a critical determinant of CHOP dynamics during the unfolded protein response. iScience 2020; 23(2): 100860. https://doi.org/10.1016/j.isci.2020.100860.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Doultsinos D, Avril T, Lhomond S, Dejeans N, Guédat P, Chevet E. Control of the unfolded protein response in health and disease. SLAS Discov 2017; 22(7): 787800. https://doi.org/10.1177/2472555217701685.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wang Y, Cao L, Liu X. Ghrelin alleviates endoplasmic reticulum stress and inflammation-mediated reproductive dysfunction induced by stress. J Assist Reprod Genet 2019; 36(11): 235766. https://doi.org/10.1007/s10815-019-01589-5.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chipurupalli S, Samavedam U, Robinson N. Crosstalk between ER stress, autophagy and inflammation. Front Med (Lausanne) 2021; 8: 758311. https://doi.org/10.3389/fmed.2021.758311.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cai J, Zhang X, Chen P, Li Y, Liu S, Liu Q, et al. The ER stress sensor inositol-requiring enzyme 1α in Kupffer cells promotes hepatic ischemia-reperfusion injury. J Biol Chem 2022; 298(1): 101532. https://doi.org/10.1016/j.jbc.2021.101532.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mitupatum T, Aree K, Kittisenachai S, Roytrakul S, Puthong S, Kangsadalampai S, et al. mRNA expression of Bax, Bcl-2, p53, Cathepsin B, Caspase-3 and Caspase-9 in the HepG2 cell line following induction by a novel monoclonal Ab Hep88 mAb: cross-talk for paraptosis and apoptosis. Asian Pac J Cancer Prev 2016; 17(2): 70312. https://doi.org/10.7314/apjcp.2016.17.2.703.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lee J-S, Zheng Z, Mendez R, Ha S-W, Xie Y, Zhang K. Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model. Toxicol Lett 2012; 211(1): 2938. https://doi.org/10.1016/j.toxlet.2012.02.017.

    • Search Google Scholar
    • Export Citation
  • 14.

    Aslan M, Elpek Ö, Akkaya B, Balaban HT, Afşar E. Organ function, sphingolipid levels and inflammation in tunicamycin induced endoplasmic reticulum stress in male rats. Hum Exp Toxicol 2021; 40(2): 25973. https://doi.org/10.1177/0960327120949619.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kim SH, Seo H, Kwon D, Yuk DY, Jung Y-S. Taurine ameliorates tunicamycin-induced liver injury by disrupting the vicious cycle between oxidative stress and endoplasmic reticulum stress. Life (Basel) 2022; 12(3): 354. https://doi.org/10.3390/life12030354.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Yoo J, Mashalidis EH, Kuk AC, Yamamoto K, Kaeser B, Ichikawa S, et al. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nat Struct Mol Biol 2018; 25(3): 21724. https://doi.org/10.1038/s41594-018-0031-y.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tatar M, Eren Ü. Protective and therapeutic role of melatonin against tunicamycin-induced ER stress in testicular tissue of rats. Iran J Basic Med Sci 2022; 25(2): 214-22. https://doi.org/10.22038/IJBMS.2022.58719.13043.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017; 22(3): 358. https://doi.org/10.3390/molecules22030358.

    • Search Google Scholar
    • Export Citation
  • 19.

    Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 2004; 22(6): 74654. https://doi.org/10.1038/nbt966.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Luo H-J, Wang J-Z, Chen J-F, Zou K. Docking study on chlorogenic acid as a potential H5N1 influenza A virus neuraminidase inhibitor. Med Chem Res 2011; 20(5): 5547. https://doi.org/10.1007/s00044-010-9336-z.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ye H-Y, Jin J, Jin L-W, Chen Y, Zhou Z-H, Li Z-Y. Chlorogenic acid attenuates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/NF-κB signal pathway. Inflammation 2017; 40(2): 5239. https://doi.org/10.1007/s10753-016-0498-9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Tian L, Su CP, Wang Q, Wu FJ, Bai R, Zhang HM, et al. Chlorogenic acid: a potent molecule that protects cardiomyocytes from TNF‐α–induced injury via inhibiting NF‐κB and JNK signals. J Cell Mol Med 2019; 23(7): 466678. https://doi.org/10.1111/jcmm.14351.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bao L, Li J, Zha D, Zhang L, Gao P, Yao T, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. Int Immunopharmacol 2018; 54: 24553. https://doi.org/10.1016/j.intimp.2017.11.021.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Zeng J, Wan X, Liu T, Xiong Y, Xiang G, Peng Y, et al. Chlorogenic acid ameliorates Klebsiella pneumoniae-induced pneumonia in immunosuppressed mice via inhibiting the activation of NLRP3 inflammasomes. Food Funct 2021; 12(19): 946675. https://doi.org/10.1039/d0fo03185b.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Zeng A, Liang X, Zhu S, Liu C, Wang S, Zhang Q, et al. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF-κB signaling pathway. Oncol Rep 2021; 45(2): 71727. https://doi.org/10.3892/or.2020.7891.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Yang H, Said AM, Huang H, Papa APD, Jin G, Wu S, et al. Chlorogenic acid depresses cellular bioenergetics to suppress pancreatic carcinoma through modulating c‐Myc‐TFR1 axis. Phytother Res 2021; 35(4): 220010. https://doi.org/10.1002/ptr.6971.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Shi A, Li T, Zheng Y, Song Y, Wang H, Wang N, et al. Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1. Front Pharmacol 2021; 12: 693048. https://doi.org/10.3389/fphar.2021.693048.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Zhang Y, Miao L, Zhang H, Wu G, Zhang Z, Lv J. Chlorogenic acid against palmitic acid in endoplasmic reticulum stress-mediated apoptosis resulting in protective effect of primary rat hepatocytes. Lipids Health Dis 2018; 17(1): 270. https://doi.org/10.1186/s12944-018-0916-0.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gomez JA, Rutkowski DT. Experimental reconstitution of chronic ER stress in the liver reveals feedback suppression of BiP mRNA expression. Elife 2016; 5: e20390. https://doi.org/10.7554/eLife.20390.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Xiao K, Ma S, Xu L, Ding N, Zhang H, Xie L, et al. Interaction between PSMD10 and GRP78 accelerates endoplasmic reticulum stress-mediated hepatic apoptosis induced by homocysteine. Gut Pathog 2021; 13(1): 63. https://doi.org/10.1186/s13099-021-00455-z.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57(8): 132938. https://doi.org/10.1194/jlr.R067595.

  • 32.

    Kanno Y, Watanabe R, Zempo H, Ogawa M, Suzuki J-I, Isobe M. Chlorogenic acid attenuates ventricular remodeling after myocardial infarction in mice. Int Heart J 2013; 54(3): 17680. https://doi.org/10.1536/ihj.54.176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Buko V, Zavodnik I, Budryn G, Zakłos-Szyda M, Belonovskaya E, Kirko S, et al. Chlorogenic acid protects against advanced alcoholic steatohepatitis in rats via modulation of redox homeostasis, inflammation, and lipogenesis. Nutrients 2021; 13(11): 4155. https://doi.org/10.3390/nu13114155.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Wang Y-C, Dong J, Nie J, Zhu J-X, Wang H, Chen Q, et al. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition. Apoptosis 2017; 22(9): 114756. https://doi.org/10.1007/s10495-017-1393-z.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kazaz IO, Demir S, Kerimoglu G, Colak F, Turkmen Alemdar N, Yilmaz Dogan S, et al. Chlorogenic acid ameliorates torsion/detorsion-induced testicular injury via decreasing endoplasmic reticulum stress. J Pediatr Urol 2022; 18(3): 289.e1.e7. https://doi.org/10.1016/j.jpurol.2022.02.013.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Li L, Chen B, An T, Zhang H, Xia B, Li R, et al. BaZiBuShen alleviates altered testicular morphology and spermatogenesis and modulates Sirt6/P53 and Sirt6/NF-κB pathways in aging mice induced by D-galactose and NaNO2. J Ethnopharmacol 2021; 271: 113810. https://doi.org/10.1016/j.jep.2021.113810.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Shen J, Wang L, Wang X, Xie J, Yao T, Yu Y, et al. Cypermethrin induces apoptosis of Sertoli cells through the endoplasmic reticulum pathway. Toxicol Ind Health 2022; 38(7): 399407. https://doi.org/10.1177/07482337221104905.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    El-Diasty HH, El-Sayyad H, Refat S, El-Ghaweet HA. Efficacy of quercetin-sensitized cisplatin against N-nitroso-N-methylurea induced testicular carcinogenesis in wistar rats. Asian Pac J Cancer Prev 2021; 22(1): 7584. https://doi.org/10.31557/APJCP.2021.22.1.75.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Owumi SE, Anaikor RA, Arunsi UO, Adaramoye OA, Oyelere AK. Chlorogenic acid co‐administration abates tamoxifen‐mediated reproductive toxicities in male rats: an experimental approach. J Food Biochem 2021; 45(2): e13615. https://doi.org/10.1111/jfbc.13615.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    El-Khadragy MF, Al-Megrin WA, Alomar S, Alkhuriji AF, Metwally DM, Mahgoub S, et al. Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chem Biol Interact 2021; 333: 109333. https://doi.org/10.1016/j.cbi.2020.109333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Du WY, Chang C, Zhang Y, Liu YY, Sun K, Wang CS, et al. High-dose chlorogenic acid induces inflammation reactions and oxidative stress injury in rats without implication of mast cell degranulation. J Ethnopharmacol 2013; 147: 7483. https://doi.org/10.1016/j.jep.2013.01.042.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Li W, Cao T, Luo C, Cai J, Zhou X, Xiao X, et al. Crosstalk between ER stress, NLRP3 inflammasome, and inflammation. Appl Microbiol Biotechnol 2020; 104(14): 612940. https://doi.org/10.1007/s00253-020-10614-y.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Khalaf HA, Elsamanoudy AZ, Abo-Elkhair SM, Hassan FE, Mohie PM, Ghoneim FM. Endoplasmic reticulum stress and mitochondrial injury are critical molecular drivers of AlCl3-induced testicular and epididymal distortion and dysfunction: protective role of taurine. Histochem Cell Biol 2022; 158(1): 97121. https://doi.org/10.1007/s00418-022-02111-2.

    • Search Google Scholar
    • Export Citation
  • 44.

    Campbell KJ, Tait SW. Targeting BCL-2 regulated apoptosis in cancer. Open Biol 2018; 8(5): 180002. https://doi.org/10.1098/rsob.180002.

  • 45.

    Lin W-C, Chuang Y-C, Chang Y-S, Lai M-D, Teng Y-N, Su I-J, et al. Endoplasmic reticulum stress stimulates p53 expression through NF-κB activation. PLoS One 2012; 7(7): e39120. https://doi.org/10.1371/journal.pone.0039120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 111 0 0
Apr 2024 72 0 0
May 2024 150 0 0
Jun 2024 97 0 0
Jul 2024 133 0 0
Aug 2024 88 0 0
Sep 2024 28 0 0