Authors:
Shota Inoue Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan

Search for other papers by Shota Inoue in
Current site
Google Scholar
PubMed
Close
,
Kyohei Matsuura Department of Physical Therapy, Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Japan

Search for other papers by Kyohei Matsuura in
Current site
Google Scholar
PubMed
Close
,
Daisuke Eguchi Department of Physical Therapy, Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Japan

Search for other papers by Daisuke Eguchi in
Current site
Google Scholar
PubMed
Close
,
Masahiro Wakayama Department of Physical Therapy, Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Japan

Search for other papers by Masahiro Wakayama in
Current site
Google Scholar
PubMed
Close
,
Kosuke Ono Department of Physical Therapy, Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Japan

Search for other papers by Kosuke Ono in
Current site
Google Scholar
PubMed
Close
,
Hanlin Jiang Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan

Search for other papers by Hanlin Jiang in
Current site
Google Scholar
PubMed
Close
, and
Hideki Moriyama Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan

Search for other papers by Hideki Moriyama in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7753-0091
Restricted access

Abstract

Physical exercise represents one of the most effective approaches to anti-aging. The goal of this study was to verify the effects of different modes and intensities of exercise on longevity proteins in the skeletal muscle in midlife. Middle-aged mice were trained in aerobic or resistance exercise for 8 weeks, and the changes in sirtuin 1 (SIRT1), adenosine monophosphate-activated kinase (AMPK), and mammalian target of rapamycin (mTOR) pathways in the skeletal muscle were evaluated by western blotting. Long-term exercise had no effects on skeletal muscle SIRT1 abundance, whereas high-intensity aerobic exercise increased AMPK phosphorylation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Low-intensity resistance exercise facilitated Akt/mTOR/p70 ribosomal protein kinase S6 (p70S6K) signaling but did not induce muscle hypertrophy. Conversely, high-intensity resistance exercise stimulated muscle hypertrophy without phosphorylation of mTOR signaling-related proteins. These results suggest the importance of setting exercise modes and intensities for anti-aging in midlife.

  • 1.

    Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016; 539(7628): 180186. https://doi.org/10.1038/nature20411.

  • 2.

    Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2015; 18(1): 5789. https://doi.org/10.1089/rej.2014.1623.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Patel KV, Coppin AK, Manini TM, Lauretani F, Bandinelli S, Ferrucci L, et al. Midlife physical activity and mobility in older age: the InCHIANTI study. Am J Prev Med 2006; 31(3): 217224. https://doi.org/10.1016/j.amepre.2006.05.005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, et al. Key signaling pathways in aging and potential interventions for healthy aging. Cells 2021; 10(3): 660. https://doi.org/10.3390/cells10030660.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 2010; 298(4): E751E760. https://doi.org/10.1152/ajpendo.00745.2009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274293. https://doi.org/10.1016/j.cell.2012.03.017.

  • 7.

    Chen Z-P, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 2003; 52(9): 22052212. https://doi.org/10.2337/diabetes.52.9.2205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 2006; 576(Pt 3): 923933. https://doi.org/10.1113/jphysiol.2006.116715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bayod S, Del Valle J, Lalanza JF, Sanchez-Roige S, de Luxán-Delgado B, Coto-Montes A, et al. Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues. Exp Gerontol 2012; 47(12): 925935. https://doi.org/10.1016/j.exger.2012.08.004.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tremblay A, Simoneau JA, Bouchard C. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism. 1994; 43(7): 814818. https://doi.org/10.1016/0026-0495(94)90259-3.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015; 14(4): 511523. https://doi.org/10.1111/acel.12342.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Flurkey K, McUrrer J, Harrison D. Mouse models in aging research. In: Fox JG, Barthold SW, Davisson MT, Newcomer CE, Quimby FW, Smith AL, editors. The mouse in biomedical research: normative biology, husbandry, and models. Vol. 3. 2nd ed. Amsterdam: Elsevier, Inc.; 2007. p. 637672. https://doi.org/10.1016/b978-012369454-6/50074-1.

    • Search Google Scholar
    • Export Citation
  • 13.

    Ikeda K, Horie-Inoue K, Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol 2019; 191: 105375. https://doi.org/10.1016/j.jsbmb.2019.105375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Norenberg KM, Fitts RH. Contractile responses of the rat gastrocnemius and soleus muscles to isotonic resistance exercise. J Appl Physiol (1985) 2004; 97(6): 23222332. https://doi.org/10.1152/japplphysiol.00955.2003.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Terada S, Tabata I. Effects of acute bouts of running and swimming exercise on PGC-1α protein expression in rat epitrochlearis and soleus muscle. Am J Physiol Endocrinol Metab 2004; 286(2):E208E216. https://doi.org/10.1152/ajpendo.00051.2003.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Aksamitiene E, Hoek JB, Kholodenko B, Kiyatkin A. Multistrip Western blotting to increase quantitative data output. Electrophoresis 2007; 28(18): 31633173. https://doi.org/10.1002/elps.200700002.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39(2): 175191. https://doi.org/10.3758/BF03193146.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Chen C, Zhou M, Ge Y, Wang X. SIRT1 and aging related signaling pathways. Mech Ageing Dev 2020; 187: 111215. https://doi.org/10.1016/j.mad.2020.111215.

  • 19.

    Gurd BJ, Yoshida Y, McFarlan JT, Holloway GP, Moyes CD, Heigenhauser GJF, et al. Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2011; 301(1): R67R75. https://doi.org/10.1152/ajpregu.00417.2010.

    • Search Google Scholar
    • Export Citation
  • 20.

    Huang C-C, Wang T, Tung Y-T, Lin W-T. Effect of exercise training on skeletal muscle SIRT1 and PGC-1α expression levels in rats of different age. Int J Med Sci 2016; 13(4): 260270. https://doi.org/10.7150/ijms.14586.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz M-N, Pehmøller C, et al. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32(4): 17411777. https://doi.org/10.1096/fj.201700442R.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 2005; 19(7): 786788. https://doi.org/10.1096/fj.04-2179fje.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bae JY. Resistance exercise regulates hepatic lipolytic factors as effective as aerobic exercise in obese mice. Int J Environ Res Public Health 2020; 17(22): 8307. https://doi.org/10.3390/ijerph17228307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Tang L, Cao W, Zhao T, Yu K, Sun L, Guo J, et al. Weight-bearing exercise prevents skeletal muscle atrophy in ovariectomized rats. J Physiol Biochem 2021; 77(2): 273281. https://doi.org/10.1007/s13105-021-00794-0.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Markofski MM, Dickinson JM, Drummond MJ, Fry CS, Fujita S, Gundermann DM, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol 2015; 65: 17. https://doi.org/10.1016/j.exger.2015.02.015.

    • Search Google Scholar
    • Export Citation
  • 26.

    Zeng Z, Liang J, Wu L, Zhang H, Lv J, Chen N. Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control. Front Physiol 2020; 11: 583478. https://doi.org/10.3389/fphys.2020.583478.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    You J-S, McNally RM, Jacobs BL, Privett RE, Gundermann DM, Lin K-H, et al. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB J 2019; 33(3): 40214034. https://doi.org/10.1096/fj.201801653RR.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Williamson D, Gallagher P, Harber M, Hollon C, Trappe S. Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 2003; 547(Pt 3): 977987. https://doi.org/10.1113/jphysiol.2002.036673.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.356
SJR Q rank Q2

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge Effective from 1st Apr 2025:
600 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2025 100 0 0
Feb 2025 107 0 0
Mar 2025 170 1 1
Apr 2025 70 1 3
May 2025 76 0 0
Jun 2025 47 0 0
Jul 2025 0 0 0