Authors:
Sukumaran Sreedevi Aswani Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Sukumaran Sreedevi Aswani in
Current site
Google Scholar
PubMed
Close
,
Mithra Sudha Mohan Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Mithra Sudha Mohan in
Current site
Google Scholar
PubMed
Close
,
Nandakumaran Sakunthala Aparna Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Nandakumaran Sakunthala Aparna in
Current site
Google Scholar
PubMed
Close
,
Puthenpura Thankappan Boban Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Puthenpura Thankappan Boban in
Current site
Google Scholar
PubMed
Close
, and
Kamalamma Saja Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India

Search for other papers by Kamalamma Saja in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2902-4984
Restricted access

Abstract

Background and aims

ADAMTS-4 is a protease enzyme involved in vascular remodeling and atherosclerosis. It was found to be upregulated in macrophages seen in atherosclerotic lesions. This study aimed to investigate the expression and regulation of ADAMTS-4 in oxidized LDL-induced human monocytes/macrophages system.

Methods

Peripheral blood mononuclear cells (PBMCs) isolated from human blood, and treated with oxidized LDL (50 μg mL−1) were used as the model system for the study. mRNA and protein expressions were studied by PCR, ELISA, and western blot analysis. ROS production and cell viability were determined by DCFDA staining and MTT assay, respectively.

Results

In the presence of oxidized LDL, monocytes get differentiated into macrophages, which were confirmed by the increased expression of macrophage differentiation markers and pro-inflammatory cytokine TNF-α. Oxidized LDL increased the mRNA and protein expression of ADAMTS-4 in monocytes/macrophages. N- Acetyl cysteine, ROS scavenger, downregulate the protein expression of ADAMTS-4. The expression of ADAMTS-4 was decreased significantly in the presence of NF-κB inhibitors. SIRT-1 activity was significantly downregulated in the macrophages and was reversed in the presence of the SIRT-1 agonist, resveratrol. Acetylation of NF-κB and hence the expression of ADAMTS-4 were significantly downregulated in the presence of SIRT-1 activator, resveratrol.

Conclusions

Our study suggests that oxidized LDL significantly upregulated the expression of ADAMTS-4 in the monocytes/macrophages through ROS- NF-κB- SIRT-1 pathway.

Supplementary Materials

    • Supplemental Material
  • 1.

    Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet 2004; 5(1): 189218. https://doi.org/10.1146/annurev.genom.5.061903.175930.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lechner K, von Schacky C, McKenzie AL, Worm N, Nixdorff U, Lechner B, et al. Lifestyle factors and high-risk atherosclerosis: pathways and mechanisms beyond traditional risk factors. Eur J Prev Cardiol 2020; 27(4): 394406. https://doi.org/10.1177/2047487319869400.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 2006; 37(3): 208222. https://doi.org/10.1016/j.micron.2005.10.007.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Taban Q, Mumtaz PT, Masoodi KZ, Haq E, Ahmad SM. Scavenger receptors in host defense: from functional aspects to mode of action. Cell Commun Signal 2022; 20(1): 2. https://doi.org/10.1186/s12964-021-00812-0.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Voloboueva LA, Liu J, Suh JH, Ames BN, Miller SS. (R)-α-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci 2005; 46(11): 43024310. https://doi.org/10.1167/iovs.04-1098.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013; 13(10): 709721. https://doi.org/10.1038/nri3520.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ganesan R, Henkels KM, Wrenshall LE, Kanaho Y, Di Paolo G, Frohman MA, et al. Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2-CD36 functional interdependence. J Leukoc Biol 2018; 103(5): 867883. https://doi.org/10.1002/JLB.2A1017-407RR.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 2009; 101(6): 10061011. https://doi.org/10.1160/Th08-07-0469.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Tedgui A. The role of inflammation in atherothrombosis: implications for clinical practice. Vasc Med 2005; 10(1): 4553. https://doi.org/10.1191/1358863x05vm589ra.

    • Search Google Scholar
    • Export Citation
  • 10.

    Apte SS. A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cel Biol 2004; 36(6): 981985. https://doi.org/10.1016/j.biocel.2004.01.014.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ashlin TG, Kwan AP, Ramji DP. Regulation of ADAMTS-1, -4 and -5 expression in human macrophages: differential regulation by key cytokines implicated in atherosclerosis and novel synergism between TL1A and IL-17. Cytokine 2013; 64(1): 234242. https://doi.org/10.1016/j.cyto.2013.06.315.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Uluçay S, Çam FS, Batır MB, Sütçü R, Bayturan Ö, Demircan K. A novel association between TGFb1 and ADAMTS4 in coronary artery disease: a new potential mechanism in the progression of atherosclerosis and diabetes. Anatol J Cardiol 2015; 15(10): 823829. https://doi.org/10.5152/akd.2014.5762.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wågsäter D, Björk H, Zhu C, Björkegren J, Valen G, Hamsten A, et al. ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis 2008; 196(2): 514522. https://doi.org/10.1016/j.atherosclerosis.2007.05.018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kumar S, Chen M, Li Y, Wong FH, Thiam CW, Hossain MZ, et al. Loss of ADAMTS4 reduces high fat diet-induced atherosclerosis and enhances plaque stability in ApoE(-/-) mice. Sci Rep 2016; 6: 31130. https://doi.org/10.1038/srep31130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Troeberg L, Fushimi K, Scilabra SD, Nakamura H, Dive V, Thøgersen IB, et al. The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3. Matrix Biol 2009; 28(8): 463469. https://doi.org/10.1016/j.matbio.2009.07.005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Huang Y, Chen J, Jiang T, Zhou Z, Lv B, Yin G, et al. Gallic acid inhibits the release of ADAMTS4 in nucleus pulposus cells by inhibiting p65 phosphorylation and acetylation of the NF-κB signaling pathway. Oncotarget 2017; 8(29): 4766547674. https://doi.org/10.18632/oncotarget.17509.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Chen LF, Williams SA, Mu Y, Nakano H, Duerr JM, Buckbinder L, et al. NF-κB RelA phosphorylation regulates RelA acetylation. Mol Cel Biol 2005; 25(18): 79667975. https://doi.org/10.1128/MCB.25.18.7966-7975.2005.

    • Search Google Scholar
    • Export Citation
  • 18.

    Adli M, Merkhofer E, Cogswell P, Baldwin AS. IKKα and IKKβ each function to regulate NF-κB activation in the TNF-induced/canonical pathway. PLoS One 2010; 5(2): e9428. https://doi.org/10.1371/journal.pone.0009428.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23(12): 23692380. https://doi.org/10.1038/sj.emboj.7600244.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Yassin LM, Londoño J, Montoya G, De Sanctis JB, Rojas M, Ramirez LA, et al. Atherosclerosis development in SLE patients is not determined by monocytes ability to bind/endocytose Ox-LDL. Autoimmunity 2011; 44(3): 201210. https://doi.org/10.3109/08916934.2010.530626.

    • Search Google Scholar
    • Export Citation
  • 21.

    Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011; 21(1): 103115. https://doi.org/10.1038/cr.2010.178.

  • 22.

    Burstein M, Scholnick HR, Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res 1970; 11(6): 583595. https://doi.org/10.1016/s0022-2275(20)42943-8.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Panda S, Ravindran B. Isolation of human PBMCs. Bio Protoc 2013; 3(3): e323. https://doi.org/10.21769/BioProtoc.323.

  • 24.

    Chen J, Cao X, An Q, Zhang Y, Li K, Yao W, et al. Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun 2018; 9(1): 1406. https://doi.org/10.1038/s41467-018-03877-7.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Jacob SS, Shastry P, Sudhakaran PR. Monocyte-macrophage differentiation in vitro: modulation by extracellular matrix protein substratum. Mol Cel Biochem 2002; 233(1–2): 917. https://doi.org/10.1023/a:1015593232347.

    • Search Google Scholar
    • Export Citation
  • 26.

    Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G Immunochemistry 1971; 8(9): 871874. https://doi.org/10.1016/0019-2791(71)90454-x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680685. https://doi.org/10.1038/227680a0.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979; 76(9): 43504354. https://doi.org/10.1073/pnas.76.9.4350.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Yang NC, Song TY, Chen MY, Hu ML. Effects of 2-deoxyglucose and dehydroepiandrosterone on intracellular NAD(+) level, SIRT1 activity and replicative lifespan of human Hs68 cells. Biogerontology 2011; 12(6): 527536. https://doi.org/10.1007/s10522-011-9342-7.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Xue J, Wang J, Liu Q, Luo A. Tumor necrosis factor-alpha induces ADAMTS-4 expression in human osteoarthritis chondrocytes. Mol Med Rep 2013; 8(6): 17551760. https://doi.org/10.3892/mmr.2013.1729.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. J Biol Chem 2000; 275(17): 1263312638. https://doi.org/10.1074/jbc.275.17.12633.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Salter RC, Ashlin TG, Kwan AP, Ramji DP. ADAMTS proteases: key roles in atherosclerosis? J Mol Med (Berl) 2010; 88(12): 12031211. https://doi.org/10.1007/s00109-010-0654-x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, et al. Versican—a critical extracellular matrix regulator of immunity and inflammation. Front Immunol 2020; 11: 512. https://doi.org/10.3389/fimmu.2020.00512.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 2019; 224(2): 242253. https://doi.org/10.1016/j.imbio.2018.11.010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Liu W, Yin Y, Zhou Z, He M, Dai Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm Res 2014; 63(1): 3343. https://doi.org/10.1007/s00011-013-0667-3.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Oka S, Kamata H, Kamata K, Yagisawa H, Hirata H. N-acetylcysteine suppresses TNF-induced NF-κB activation through inhibition of IκB kinases. FEBS Lett 2000; 472(2–3): 196202. https://doi.org/10.1016/s0014-5793(00)01464-2.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, et al. Regulation of SIRT1 and its roles in inflammation. Front Immunol 2022; 13: 831168. https://doi.org/10.3389/fimmu.2022.831168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bai Y, Chen K, Zhan J, Wu M. miR-122/SIRT1 axis regulates chondrocyte extracellular matrix degradation in osteoarthritis. Biosci Rep 2020; 40(6): BSR20191908. https://doi.org/10.1042/BSR20191908.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Breitenstein A, Wyss CA, Spescha RD, Franzeck FC, Hof D, Riwanto M, et al. Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PLoS One 2013; 8(1): e53106. https://doi.org/10.1371/journal.pone.0053106.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Elayyan J, Lee EJ, Gabay O, Smith CA, Qiq O, Reich E, et al. LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes. FASEB J 2017; 31(7): 31163125. https://doi.org/10.1096/fj.201601253R.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 106 1 0
Apr 2024 74 0 0
May 2024 99 0 0
Jun 2024 69 0 0
Jul 2024 65 0 0
Aug 2024 63 1 1
Sep 2024 56 0 0