Authors:
Takashi Abe Graduate School of Health and Sports Science, Institute of Health and Sports Science & Medicine, Juntendo University, Inzai-shi, Chiba, 270-1695, Japan
Division of Children's Health and Exercise Research, Institute of Trainology, Fukuoka-shi, Fukuoka, 814-0001, Japan

Search for other papers by Takashi Abe in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0568-1004
,
Hayao Ozaki School of Sport and Health Science, Tokai Gakuen University, Miyoshi-shi, Aichi, 270-0207, Japan

Search for other papers by Hayao Ozaki in
Current site
Google Scholar
PubMed
Close
,
Akemi Abe Division of Children's Health and Exercise Research, Institute of Trainology, Fukuoka-shi, Fukuoka, 814-0001, Japan

Search for other papers by Akemi Abe in
Current site
Google Scholar
PubMed
Close
,
Shuichi Machida Graduate School of Health and Sports Science, Institute of Health and Sports Science & Medicine, Juntendo University, Inzai-shi, Chiba, 270-1695, Japan

Search for other papers by Shuichi Machida in
Current site
Google Scholar
PubMed
Close
,
Hisashi Naito Graduate School of Health and Sports Science, Institute of Health and Sports Science & Medicine, Juntendo University, Inzai-shi, Chiba, 270-1695, Japan

Search for other papers by Hisashi Naito in
Current site
Google Scholar
PubMed
Close
, and
Jeremy P. Loenneke Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, 38677, USA

Search for other papers by Jeremy P. Loenneke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Background

Grip strength is a marker of future health conditions and is mainly generated by the extrinsic flexor muscles of the fingers. Therefore, whether or not there is a relationship between grip strength and forearm muscle size is vital in considering strategies for grip strength development during growth. Thus, this study aimed to examine the association between changes in grip strength and forearm muscle thickness in young children.

Methods

Two hundred eighteen young children (104 boys and 114 girls) performed maximum voluntary grip strength and ultrasound-measured muscle thickness measurements in the right hand. Two muscle thicknesses were measured as the perpendicular distance between the adipose tissue-muscle interface and muscle-bone interface of the radius (MT-radius) and ulna (MT-ulna). All participants completed the first measurement and underwent a second measurement one year after the first one.

Results

There were significant (P < 0.001) within-subject correlations between MT-ulna and grip strength [r = 0.50 (0.40, 0.60)] and MT-radius and grip strength [r = 0.59 (0.49, 0.67)]. There was no significant between-subject correlation between MT-ulna and grip strength [r = 0.07 (−0.05, 0.20)], but there was a statistically significant (P < 0.001) between-subject relationship between MT-radius and grip strength [r = 0.27 (0.14, 0.39)].

Conclusion

Although we cannot infer causation from the present study, our findings suggest that as muscle size increases within a child, so does muscle strength. Our between-subject analysis, however, suggests that those who observed the greatest change in muscle size did not necessarily get the strongest.

  • 1.

    Kenjle K, Limaye S, Ghugre PS, Udipi SA. Grip strength as an index for assessment of nutritional status of children aged 6-10 years. J Nutr Sci Vitaminol (Tokyo) 2005; 51: 8792. https://doi.org/10.3177/jnsv.51.87.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tostes NF, da Cunha Antunes Saraiva D, Martucci RB. Association between nutritional status and muscle strength in pediatric cancer patients. Clin Nutr ESPEN 2021; 43: 436441. https://doi.org/10.1016/j.clnesp.2021.03.009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Saint-Maurice PF, Laurson K, Welk GJ, Elsenmann J, Gracia-Marco L, Artero EG, et al. Grip strength cutpoints for youth based on a clinically relevant bone health outcome. Arch Osteoporos 2018; 13: 92. https://doi.org/10.1007/s11657-018-0502-0.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Saraiva BTC, Agostinete RR, Junior IFF, de Sousa DER, Gobbo LA, Tebar WR, et al. Association between handgrip strength and bone mineral density of Brazilian children and adolescents stratified by sex: a cross-sectional study. BMC Pediatr 2021; 21: 207. https://doi.org/10.1186/s12887-021-02669-1.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Blakeley CE, Van Rompay MI, Schultz NS, Sacheck JM. Relationship between muscle strength and dyslipidemia, serum 25(OH)D, and weight status among diverse schoolchildren: a cross-sectional analysis. BMC Pediatr 2018; 18: 23. https://doi.org/10.1186/s12887-018-0998-x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ortega FB, Silventoinen K, Tynelius P, Rasmussen F. Muscular strength in male adolescents and premature death: cohort study of one million participants. BMJ 2012; 345: e7279. https://doi.org/10.1136/bmj.e7279.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lindgren M, Aberg M, Schaufelberger M, Aberg D, Schioler L, Toren K, et al. Cardiorespiratory fitness and muscle strength in late adolescence and long-term risk of early heart failure in Swedish men. Eur J Prev Cardio 2017; 24: 876884. https://doi.org/10.1177/2047487317689974.

    • Search Google Scholar
    • Export Citation
  • 8.

    Fraser BJ, Blizzard L, Buscot MJ, Schmidt MD, Dwyer T, Venn AJ, et al. The association between grip strength measured in childhood, young- and mid-adulthood and prediabetes or type 2 diabetes in mid-adulthood. Sports Med 2021; 51: 175183. https://doi.org/10.1007/s40279-020-01328-2.

    • Search Google Scholar
    • Export Citation
  • 9.

    Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum Jr A, Orlandini A, et al. Prognostic value of grip strength: findings from the prospective urban rural epidemiology (PURE) study. Lancet 2015; 386: 266273. https://doi.org/10.1016/S0140-6736(14)62000-6.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Li G, Qiao Y, Lu Y, Liu S, Ding Y, Chen X, et al. Role of handgrip strength in predicting new-onset diabetes: findings from the survey of health, ageing and retirement in Europe. BMC Geriatr 2021: 21: 445. https://doi.org/10.1186/s12877-021-02382-9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Peralta M, Dias CM, Marques A, Henriques-Neto D, Sousa-Uva M. Longitudinal association between grip strength and the risk of heart diseases among European middle-aged and older adults. Exp Grontol 2023; 171: 112014. https://doi.org/10.1016/j.exger.2022.112014.

    • Search Google Scholar
    • Export Citation
  • 12.

    Parra-Soto S, Pell JP, Celis-Morales C, Ho FK. Absolute and relative grip strength as predictors of cancer: prospective cohort study of 445552 participants in UK Biobank. J Cachexia Sarcopenia Muscle 2022; 13: 325332. https://doi.org/10.1002/jcsm.12863.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Celis-Morales CA, Welsh P, Lyall DM, Steell L, Petermann F, Anderson J, et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. BMJ 2018; 36: k1651. https://doi.org/10.1136/bmj.k1651.

    • Search Google Scholar
    • Export Citation
  • 14.

    Esteban-Cornejo I, Ho FK, Petermann-Rocha F, Lyall DM, Martinez-Gomez D, Cabanas-Sanchez V, et al. Handgrip strength and all-cause dementia incidence and mortality: findings from the UK Biobank prospective cohort study. J Cachexia Sarcopenia Muscle 2022; 13: 15141525. https://doi.org/10.1002/jcsm.12857.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Stessman J, Rottenberg Y, Fischer M, Hammerman-Rozenberg A, Jacobs JM. Handgrip strength in old and very old adults: mood, cognition, function, and mortality. J Am Geriatr Soc 2017; 65: 526532. https://doi.org/10.1111/jgs.14509.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jiang R, Westwater ML, Noble S, Rosenblatt M, Dai W, Qi S, et al. Associations between grip strength, brain structure, and mental health in > 40,000 participants from the UK Biobank. BMC Med 2022; 20: 286. https://doi.org/10.1186/s12916-022-02490-2.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Duchowny KA, Ackley SF, Brenowitz WD, Wang J, Zimmerman SC, Caunca MR, et al. Associations between handgrip strength and dementia risk, cognition, and neuroimaging outcomes in the UK Biobank cohort study. JAMA Netw Open 2022; 5: e2218314. https://doi.org/10.1001/jamanetworkopen.2022.18314.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, et al. Midlife hand grip strength as a predictor of old age disability. JAMA 1999; 281: 558560. https://doi.org/10.1001/jama.281.6.558.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 2002; 57: B359B365. https://doi.org/10.1093/gerona/57.10.b359.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 2006; 61: 7277. https://doi.org/10.1093/gerona/61.1.72.

    • Search Google Scholar
    • Export Citation
  • 21.

    Abe T, Thiebaud RS, Ozaki H, Yamasaki S, Loenneke JP. Children with low handgrip strength: a narrative review of possible exercise strategies to improve its development. Children 2022; 9: 1616. https://doi.org/10.3390/children9111616.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Buckner SL, Dankel SJ, Bell ZW, Abe T, Loenneke JP. The association of handgrip strength and mortality: what does it tell us and what can we do with it? Rejuvenation Res 2019; 22: 230234. https://doi.org/10.1089/rej.2018.2111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Abe T, Counts BR, Barnett BE, Dankel SJ, Lee K, Loenneke JP. Associations between handgrip strength and ultrasound-measured muscle thickness of the hand and forearm in young men and women. Ultrasound Med Biol 2015; 41: 21252130. https://doi.org/10.1016/j.ultrasmedbio.2015.04.004.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Neu CM, Rauch F, Rittweger J, Manz F, Schoenau E. Influence of puberty on muscle development at the forearm. Am J Physiol Endocrinol Metab 2002; 283: E103E107. https://doi.org/10.1152/ajpendo.00445.2001.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tonson A, Ratel S, Fur YL, Cozzone P, Bendahan D. Effect of maturation on the relationship between muscle size and force production. Med Sci Sports Exerc 2008; 40: 918925. https://doi.org/10.1249/MSS.0b013e3181641bed.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary I, Dennison EM, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One 2014; 9: e113637. https://doi.org/10.1371/journal.pone.0113637.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bohannon RW, Wang YC, Bubela D, Gershon RC. Handgrip strength: a population-based study of norms and age trajectories for 3- to 17-year-olds. Pediatr Phys Ther 2017; 29: 118123. https://doi.org/10.1097/PEP.0000000000000366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ramirez-Velez R, Rincon-Pabon D, Correa-bautista JE, Garcia-Hermoso A, Izquierdo M. Handgrip strength: normative reference values in males and females aged 6-64 years old in a Colombian population. Clin Nutr ESPEN 2021; 44: 379386. https://doi.org/10.1016/j.clnesp.2021.05.009.

    • Search Google Scholar
    • Export Citation
  • 29.

    Abe T, Ozaki H, Loenneke JP, Natsume T, Deng P, Naito H. A longitudinal study of handgrip strength asymmetry. Am J Hum Biol 2022; 34: e23722. https://doi.org/10.1002/ajhb.23722.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Abe A, Yamasaki S, Tahara R, Loenneke JP, Abe T. Comparison of handgrip strength values in young children when using two different types of dynamometers. Am J Hum Biol 2022; 34: e23771. https://doi.org/10.1002/ajhb.23771.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sanchez-Delgado G, Cadenas-Sanchez C, Mora-Gonzalez J, Martinez-Tellez B, Chillon P, Lof M, et al. Assessment of handgrip strength in preschool children aged 3 to 5 years. J Hand Surg 2015; 40: 966972. https://doi.org/10.1177/1753193415592328.

    • Search Google Scholar
    • Export Citation
  • 32.

    Abe T, Sanui R, Sasaki A, Ishibashi A, Daikai N, Shindo Y, et al. Optimal grip span for measuring maximum handgrip strength in preschool children. Int J Clin Med 2022; 13: 479488. https://doi.org/10.4236/ijcm.2022.1311035.

    • Search Google Scholar
    • Export Citation
  • 33.

    Abe A, Sanui R, Loenneke JP, Abe T. Is the peak value truly maximal when measuring strength in young children? An updated study. J Trainol 2022; 11: 1721. https://doi.org/10.17338/trainology.11.2_17.

    • Search Google Scholar
    • Export Citation
  • 34.

    Abe T, Ozaki H, Abe A, Loenneke JP. Impact of forearm pronation on ultrasound-measured forearm muscle thickness in children and adolescents. Imaging 2022; 14: 104108. https://doi.org/10.1556/1647.2022.00074.

    • Search Google Scholar
    • Export Citation
  • 35.

    Kanehisa H, Abe T, Fukunaga T. Growth trends of dynamic strength in adolescent boys: a 2-year follow-up survey. J Sports Med Phys Fitness 2003; 43: 459464.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Wood LE, Dixon S, Grant C, Armstrong N. Elbow flexion and extension strength relative to body or muscle size in children. Med Sci Sports Exerc 2004; 36: 19771984. https://doi.org/10.1249/01.mss.0000145453.02598.7e.

    • Search Google Scholar
    • Export Citation
  • 37.

    Kanehisa H, Kuno S, Katsuta S, Fukunaga T. A 2-year follow-up study on muscle size and dynamic strength in teenage tennis players. Scand J Med Sci Sports 2006; 16: 93101. https://doi.org/10.1111/j.1600-0838.2005.00470.x.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wood LE, Dixon S, Grant C, Armstrong N. Isokinetic elbow torque development in children. Int J Sports Med 2008; 29: 466470. https://doi.org/10.1055/s-2007-989234.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Dankel SJ, Buckner SL, Jessee MB, Mouser JG, Mattocks KT, Abe T, et al. Correlations do not show cause and effect: not even for changes in muscle size and strength. Sports Med 2018; 48: 16. https://doi.org/10.1007/s40279-017-0774-3.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 58 7 0
Dec 2023 140 2 0
Jan 2024 188 3 1
Feb 2024 55 0 0
Mar 2024 168 1 0
Apr 2024 125 1 2
May 2024 0 0 0