Authors:
Viviane A. R. Sant’Anna Lipids, Atherosclerosis and Vascular Biology Section; Cardiology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo (São Paulo), Brazil
Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo (São Paulo), Brazil
Academic Research Organization, Hospital Albert Einstein, São Paulo (São Paulo), Brazil

Search for other papers by Viviane A. R. Sant’Anna in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5008-3129
,
Adriano H. P. Barbosa Hemodynamic and Interventional Cardiology Section; Cardiology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo (São Paulo), Brazil

Search for other papers by Adriano H. P. Barbosa in
Current site
Google Scholar
PubMed
Close
,
Rodrigo A. Souza Hemodynamic and Interventional Cardiology Section; Cardiology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo (São Paulo), Brazil

Search for other papers by Rodrigo A. Souza in
Current site
Google Scholar
PubMed
Close
,
José M. A. Sousa Hemodynamic and Interventional Cardiology Section; Cardiology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo (São Paulo), Brazil

Search for other papers by José M. A. Sousa in
Current site
Google Scholar
PubMed
Close
,
Frederico Monfardini Academic Research Organization, Hospital Albert Einstein, São Paulo (São Paulo), Brazil

Search for other papers by Frederico Monfardini in
Current site
Google Scholar
PubMed
Close
,
Magnus Gidlund Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo (São Paulo), Brazil

Search for other papers by Magnus Gidlund in
Current site
Google Scholar
PubMed
Close
, and
Henrique A. R. Fonseca Lipids, Atherosclerosis and Vascular Biology Section; Cardiology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo (São Paulo), Brazil
Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo (São Paulo), Brazil
Academic Research Organization, Hospital Albert Einstein, São Paulo (São Paulo), Brazil

Search for other papers by Henrique A. R. Fonseca in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Background

There are limited data about the influence of stent composition on immune responses after percutaneous coronary intervention (PCI).

Objective

The aim was to compare the effects of PCI with conventional cobalt-chromium bare metal stent (BMS) and drug-eluting stent (DES) implantation on the modulation of humoral and cellular immune responses.

Methods

A randomised, single-centre, open pilot study involving patients with stable coronary artery disease eligible for PCI was performed. Blood samples were collected from the peripheral artery (PA) and the coronary sinus (CS) at baseline and 40 weeks following PCI. IgM and IgG autoantibodies (Abs), anti-oxLDL and anti-ApoB-D, as well as cytokine levels were evaluated by enzyme-linked immunosorbent assay.

Results

A total of 30 patients of 60 years mean age were included, 68% of whom were men. At the nine-month follow-up, a modulation in the levels of cytokines and autoantibodies was observed in both stent type groups. However, no difference was observed in the modulation of these markers between stents.

Conclusion

The stent type promotes modulations in cellular and humoral immune responses in the long-term, with differences in the magnitude of effects in specific immune responses.

Supplementary Materials

    • Supplemental Material
  • 1.

    Byrne RA, Stone GW, Ormiston J, Kastrati A. Coronary balloon angioplasty, stents, and scaffolds. Lancet 2017; 390(10096): 78192. https://doi.org/10.1016/s0140-6736(17)31927-x.

    • Search Google Scholar
    • Export Citation
  • 2.

    Saito Y, Kobayashi Y. Percutaneous coronary intervention strategies in patients with acute myocardial infarction and multivessel disease: completeness, timing, lesion assessment, and patient status. J Cardiol 2019; 74(2): 95101. https://doi.org/10.1016/j.jjcc.2019.04.001.

    • Search Google Scholar
    • Export Citation
  • 3.

    Centurión OA. Serum biomarkers and source of inflammation in acute coronary syndromes and percutaneous coronary interventions. Cardiovasc Revasc Med 2016; 17(2): 11928. https://doi.org/10.1016/j.carrev.2016.01.005.

    • Search Google Scholar
    • Export Citation
  • 4.

    Madrid-Miller A, Chávez-Sánchez L, Careaga-Reyna G, Borrayo-Sánchez G, Chávez-Rueda K, Montoya-Guerrero SA, et al. Clinical outcome in patients with acute coronary syndrome and outward remodeling is associated with a predominant inflammatory response. BMC Res 2014; 7: 669. https://doi.org/10.1186/1756-0500-7-669.

    • Search Google Scholar
    • Export Citation
  • 5.

    Jukema JW, Verschuren JJW, Ahmed TAN, Quax PHA. Reestenosis after PCI. Part I: pathophysiology and risk factors. Nat Rev Cardiol 2011; 9: 5362. https://doi.org/10.1038/nrcardio.2011.132.

    • Search Google Scholar
    • Export Citation
  • 6.

    Fu Y, Zhang S, Du H, Li L, Wang C, Zheng G, et al. Impact of vessel curvature on neointimal healing after stent implantation as assessed by optical coherence tomography. Medicine (Baltimore) 2018; 97(16): e0518. https://doi.org/10.1097/MD.0000000000010518.

    • Search Google Scholar
    • Export Citation
  • 7.

    Hu W, Jiang J. Hypersensitivity and in-stent restenosis in coronary stent materials. Front Bioeng Biotechnol 2022; 10: 1003322. https://doi.org/10.3389/fbioe.2022.1003322.

    • Search Google Scholar
    • Export Citation
  • 8.

    Stettler C, Wandel S, Allemann S, Kastrati A, Morice MC, Schomig A, et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 2007; 370(9591): 93748. https://doi.org/10.1016/S0140-6736(07)61444-5.

    • Search Google Scholar
    • Export Citation
  • 9.

    Bangalore S, Toklu B, Amoroso N, Fusaro M, Kumar S, Hannan EL, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ 2013; 347: f6625. https://doi.org/10.1136/bmj.f6625.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bangalore S. The elusive late benefit of biodegradable polymer drug eluting stents. Circulation 2019; 139: 3346. https://doi.org/10.1161/CIRCULATIONAHA.118.038378.

    • Search Google Scholar
    • Export Citation
  • 11.

    Harrington RA. Targeting inflammation in coronary artery disease. N Engl J Med 2017; 377(12): 11978. https://doi.org/10.1056/NEJMe1709904.

    • Search Google Scholar
    • Export Citation
  • 12.

    Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko, AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med 2017; 95(11): 115365. https://doi.org/10.1007/s00109-017-1575-8.

    • Search Google Scholar
    • Export Citation
  • 13.

    Van den Berg, VJ, Vroegindewey MM, Kardys I, Boersma E, Haskard D, Hartley A, et al. Anti-oxidized LDL antibodies and coronary artery disease: a systematic review. Antioxidants 2019; 8(10): 484. https://doi.org/10.3390/antiox8100484.

    • Search Google Scholar
    • Export Citation
  • 14.

    Soares SR, Carvalho-Oliveira R, Ramos-Sanchez E, Catanozi S, da Silva LFF, Mauad T, et al. Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice. Atherosclerosis 2009; 207(2): 36873. https://doi.org/10.1016/j.atherosclerosis.2009.04.041.

    • Search Google Scholar
    • Export Citation
  • 15.

    Graham MM, Knudtson ML, O'Neill BJ, Ross DB and Canadian Cardiovascular Society Access to Care Working G. Treating the right patient at the right time: access to cardiac catheterization, percutaneous coronary intervention and cardiac surgery. Can J Cardiol 2006; 22: 67983. https://doi.org/10.1016/s0828-282x(06)70936-9.

    • Search Google Scholar
    • Export Citation
  • 16.

    Jaumdally R, Varma C, Macfadyen RJ, Lip GYH. Coronary sinus blood sampling: an insight into local cardiac pathophysiology and treatment? Eur Heart J 2007; 28(8): 92940. https://doi.org/10.1093/eurheartj/ehm015.

    • Search Google Scholar
    • Export Citation
  • 17.

    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499502. https://doi.org/10.1093/clinchem/18.6.499.

    • Search Google Scholar
    • Export Citation
  • 18.

    Fonseca HA, Fonseca FA, Monteiro AM, Bianco HT, Boschcov P, Brandão SA, et al. Obesity modulates the immune response to oxidized LDL in hypertensive patients. Cell Biochem Biophys 2013; 67: 145160. https://doi.org/10.1007/s12013-013-9585-9.

    • Search Google Scholar
    • Export Citation
  • 19.

    Fonseca HA, Fonseca FA, Lins LC, Monteiro AM, Bianco HT, Brandão SA, et al. Antihypertensive therapy increases natural immunity response in hypertensive patients. Life Sci 2015; 124130. https://doi.org/10.1016/j.lfs.2015.10.030.

    • Search Google Scholar
    • Export Citation
  • 20.

    Fernvik EC, Ketelhuth DFJ, Russo M, Gidlund. The autoantibody repertoire against copper- or macrophage-modified LDL differs in normolipidemics and hypercholesterolemic patients. J Clin Immunol 2004; 24(2): 1706. https://doi.org/10.1023/B:JOCI.0000019782.67993.0b.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ketelhuth DFJ, Tonini GC, Carvalho MDT, Ramos RF, Boschcov P, Gidlund M. Autoantibody response to chromatographic fractions from oxidized LDL in unstable angina patients and healthy controls. Scand J Immunol 2008; 68(4): 45662. https://doi.org/10.1111/j.1365-3083.2008.02154.x.

    • Search Google Scholar
    • Export Citation
  • 22.

    Monteiro AM, Jardini MAN, Alves A, Giampaoli V, Aubin ECQ, Figueiredo Neto AM, et al. Cardiovascular disease parameters in periodontitis. J Periodontol 2009; 80(3): 37888. https://doi.org/10.1902/jop.2009.080431.

    • Search Google Scholar
    • Export Citation
  • 23.

    Whitehead AL, Julious S, Cooper CL, Campbell MJ. Estimating the sample size for a pilot randomised trial to minimize the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Meth Med Res 2016; 25(3): 105773. https://doi.org/10.1177/0962280215588241.

    • Search Google Scholar
    • Export Citation
  • 24.

    Viechtbauer W, Smits L, Kotz D, Budé L, Spigt M, Serroyen J, et al. A simple formula for the calculation of sample size in pilot studies. J Clin Epidemiol 2015; 68(11): 13759. https://doi.org/10.1016/j.jclinepi.2015.04.014.

    • Search Google Scholar
    • Export Citation
  • 25.

    Philip F, Stewart S, Southard JA. Very late thrombosis with second generation drug eluting stents compared to bare metal stents: network meta-analysis of randomized primary percutaneous coronary intervention trials. Catheterization Cardiovasc Interventions 2016; 88(1): 3848. https://doi.org/10.1002/ccd.26458.

    • Search Google Scholar
    • Export Citation
  • 26.

    Urban P, Meredith IT, Abizaid A, Pocock SJ. Polymer-free drug-coated coronary stents in patients at high bleeding risk. NEJM 2015; 373: 203847. https://doi.org/10.1056/NEJMoa1503943.

    • Search Google Scholar
    • Export Citation
  • 27.

    Feinberg J, Nielsen EE, Greenhalgh J, Housnsome J, Sethi NJ, Safi S, et al. Drug-eluting stents versus bare-metal stents for acute coronary syndrome. Cochrane Database Syst Rev 2017; 8: CD012481. https://doi.org/10.1002/14651858.CD012481.pub2.

    • Search Google Scholar
    • Export Citation
  • 28.

    Bonaa KH, Mannsverk J, Wiseth R, Aaberge L, Myreng Y, Nygard O, et al. Drug-eluting or bare-metal stents for coronary artery disease. NEJM 2016; 375: 124252. https://doi.org/10.1056/NEJMoa1607991.

    • Search Google Scholar
    • Export Citation
  • 29.

    Sun J, Yu H, Liu H, Pu D, Gao J, Jin X, et al. Correlation of pre-operative circulating inflammatory cytokines with restenosis and rapid angiographic stenotic progression risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents. JCLA 2020; 34(3): e23108. https://doi.org/10.1002/jcla.23108.

    • Search Google Scholar
    • Export Citation
  • 30.

    Fagerberg B, Gullberg UP, Alm R, Nilsson J, Fredrikson GN. Circulating autoantibodies against the apolipoprotein B-100 peptides p45 and p210 in relation to the occurrence of carotid plaques in 64-year-old women. Plos One 2015; 112. https://doi.org/10.1371/journal.pone.0120744.

    • Search Google Scholar
    • Export Citation
  • 31.

    Tsiantoulas D, Perkmann T, Afonyushkin T, Mangold A, Prohaska TA, Papac-Milicevic N, et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J Lipid Res 2015; 56(2): 4408. https://doi.org/10.1194/jlr.P054569.

    • Search Google Scholar
    • Export Citation
  • 32.

    van den Berg VJ, Haskard DO, Fedorowski A, Hartley A, Kardys I, Caga-Anan M, et al. IgM anti-malondialdehyde low density lipoprotein antibody levels indicate coronary heart disease and necrotic core characteristics in the Nordic Diltiazem (NORDIL) study and the Integrated Imaging and Biomarker Study 3 (IBIS-3). EbioMedicine 2018; 36: 6372. https://doi.org/10.1016/j.ebiom.2018.08.023.

    • Search Google Scholar
    • Export Citation
  • 33.

    Asciutto G, Wigren M, Fredrikson GN, Mattisson IY, Gronberg C, Alm R, et al. Apolipoprotein B-100 antibody interaction with atherosclerotic plaque inflammation and repair processes. Stroke 2016; 47: 11403. https://doi.org/10.1161/STROKEAHA.116.012677.

    • Search Google Scholar
    • Export Citation
  • 34.

    Sant'Anna VAR, Souza RA, Barbosa AHP, Sousa JMA, Carvalho ACC, Gidlund M, et al. Modulations on inflammatory and humoral immune responses to oxidized LDL and apolipoprotein B-100 epitope before and after coronary angioplasty. Hellenic J Cardiol. 2021; 62(3): 250252. https://doi.org/10.1016/j.hjc.2020.08.001.

    • Search Google Scholar
    • Export Citation
  • 35.

    Fonseca HAR, Gidlund M, Sant'Anna VR, Fernandes ER, Fonseca FAH, Izar MC. HIV-infected naïve patients exhibit endothelial dysfunction concomitant with decreased natural antibodies against defined apolipoprotein B autoantigens. Arq Bras Cardiol 2021; 116(4): 8449. https://doi.org/10.36660/abc.20200062.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 218 0 0
Apr 2024 297 0 0
May 2024 133 0 0
Jun 2024 117 0 0
Jul 2024 106 1 2
Aug 2024 203 0 0
Sep 2024 39 0 0