Authors:
Lucia-Maria Ciovicescu Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania

Search for other papers by Lucia-Maria Ciovicescu in
Current site
Google Scholar
PubMed
Close
,
Simona Valeria Clichici Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania

Search for other papers by Simona Valeria Clichici in
Current site
Google Scholar
PubMed
Close
,
Ramona-Ariana Simedrea Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania

Search for other papers by Ramona-Ariana Simedrea in
Current site
Google Scholar
PubMed
Close
,
Felix Ciovicescu Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
Department of Internal Medicine, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania

Search for other papers by Felix Ciovicescu in
Current site
Google Scholar
PubMed
Close
,
Simona Corina Lupan CAB MED MF Lupan V.E. Simona Corina, 400655 Cluj-Napoca, Romania

Search for other papers by Simona Corina Lupan in
Current site
Google Scholar
PubMed
Close
,
Lavinia Ioana Sabău Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania

Search for other papers by Lavinia Ioana Sabău in
Current site
Google Scholar
PubMed
Close
,
Alina Mihaela Toader Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania

Search for other papers by Alina Mihaela Toader in
Current site
Google Scholar
PubMed
Close
, and
Teodora Mocan Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400158, Cluj-Napoca, Romania

Search for other papers by Teodora Mocan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9925-0998
Restricted access

Abstract

Liver cirrhosis is the consequence of chronicisation and of the evolution of untreated liver diseases. The complexity of the disease and the complications it can cause have been and are still intensively researched, aiming to discover new therapies or improve existing ones for the effective management of liver cirrhosis. Currently, the treatment used is directed against the cause that caused the disease, if it is known; in advanced cases, liver transplantation is the only valid therapeutic option. Hepatoprotectors that are currently on the market are numerous, having as common properties the antioxidant, anti-inflammatory, stabilizing properties of the hepatocytic membrane; A few examples: the ethanolic extract of Curcuma longa, the extract from the plant called Sophora flavescens, the extract of Glycyrrhiza glabra, silymarin (extracted from Sylibum marianum), the extract of Ganoderma lucidum, etc. Liver cirrhosis is accompanied by generalized hypovitaminosis, so supplementing the diet with hydro- and liposoluble vitamins is mandatory. Protein-caloric malnutrition can be prevented by a hyperprotein diet, especially beneficial being the supplementation with branched-chain amino acids, which are also applicable in the prophylaxis and treatment of hepatic encephalopathy. Nanoparticles are a state-of-the-art therapeutic option, proving increased bioavailability, for example polydopamine nanoparticles loaded with l-arginine have been tested as therapy in liver cirrhosis. Among the innovative treatment directions in liver cirrhosis are hybrid products (e.g. hybrid polymer nanoparticles loaded with caffeic acid), cell cultures and artificial or bioartificial liver support.

  • 1.

    Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014 May 17; 383(9930): 174961. https://doi.org/10.1016/S0140-6736(14)60121-5.

    • Search Google Scholar
    • Export Citation
  • 2.

    Wiegand J, Berg T. The etiology, diagnosis and prevention of liver cirrhosis: part 1 of a series on liver cirrhosis. Dtsch Arztebl Int 2013 Feb; 110(6): 8591. https://doi.org/10.3238/arztebl.2013.0085.

    • Search Google Scholar
    • Export Citation
  • 3.

    Kim SU, Oh HJ, Wanless IR, Lee S, Han KH, Park YN. The Laennec staging system for histological sub-classification of cirrhosis is useful for stratification of prognosis in patients with liver cirrhosis. J Hepatol 2012 Sep; 57(3): 55663. https://doi.org/10.1016/j.jhep.2012.04.029.

    • Search Google Scholar
    • Export Citation
  • 4.

    Lee SJ, Kim KH, Park KK. Mechanisms of fibrogenesis in liver cirrhosis: the molecular aspects of epithelial-mesenchymal transition. World J Hepatol 2014 Apr 27; 6(4): 20716. https://doi.org/10.4254/wjh.v6.i4.207.

    • Search Google Scholar
    • Export Citation
  • 5.

    Cichoz-Lach H, Celiński K, Słomka M, Kasztelan-Szczerbińska B. Pathophysiology of portal hypertension. J Physiol Pharmacol 2008 Aug; 59(Suppl 2): 2318.

    • Search Google Scholar
    • Export Citation
  • 6.

    Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008 Mar 8; 371(9615): 83851. https://doi.org/10.1016/S0140-6736(08)60383-9.

  • 7.

    Merion RM. Current status and future of liver transplantation. Semin Liver Dis 2010 Nov; 30(4): 41121. https://doi.org/10.1055/s-0030-1267541.

    • Search Google Scholar
    • Export Citation
  • 8.

    Hartl J, Scherer MN, Loss M, Schnitzbauer A, Farkas S, Baier L, et al. Strong predictors for alcohol recidivism after liver transplantation: non-acceptance of the alcohol problem and abstinence of <3 months. Scand J Gastroenterol 2011 Oct; 46(10): 125766. https://doi.org/10.3109/00365521.2011.603160.

    • Search Google Scholar
    • Export Citation
  • 9.

    Kornberg A, Küpper B, Tannapfel A, Katenkamp K, Thrum K, Habrecht O, et al. Long-term survival after recurrent hepatocellular carcinoma in liver transplant patients: clinical patterns and outcome variables. Eur J Surg Oncol 2010 Mar; 36(3): 27580. https://doi.org/10.1016/j.ejso.2009.10.001.

    • Search Google Scholar
    • Export Citation
  • 10.

    Carbone M, Neuberger JM. Autoimmune liver disease, autoimmunity and liver transplantation. J Hepatol 2014 Jan; 60(1): 21023. https://doi.org/10.1016/j.jhep.2013.09.020.

    • Search Google Scholar
    • Export Citation
  • 11.

    Tasdogan BE, Ma M, Simsek C, Saberi B, Gurakar A. Update on immunosuppression in liver transplantation. Euroasian J Hepatogastroenterol 2019 Jul-Dec; 9(2): 96101. https://doi.org/10.5005/jp-journals-10018-1301.

    • Search Google Scholar
    • Export Citation
  • 12.

    Valour F, Conrad A, Ader F, Launay O. Vaccination in adult liver transplantation candidates and recipients. Clin Res Hepatol Gastroenterol 2020 Apr; 44(2): 126134. https://doi.org/10.1016/j.clinre.2019.08.007.

    • Search Google Scholar
    • Export Citation
  • 13.

    de la Riva GA, López Mendoza FJ, Agüero-Chapin G. Known hepatoprotectors act as antioxidants and immune stimulators in stressed mice: perspectives in animal health care. Curr Pharm Des 2018; 24(40): 48254837. https://doi.org/10.2174/1381612825666190116151628.

    • Search Google Scholar
    • Export Citation
  • 14.

    Salama SM, Abdulla MA, AlRashdi AS, Ismail S, Alkiyumi SS, Golbabapour S. Hepatoprotective effect of ethanolic extract of Curcuma longa on thioacetamide induced liver cirrhosis in rats. BMC Complement Altern Med 2013 Mar 5; 13: 56. https://doi.org/10.1186/1472-6882-13-56.

    • Search Google Scholar
    • Export Citation
  • 15.

    Sengupta M, Sharma GD, Chakraborty B. Hepatoprotective and immunomodulatory properties of aqueous extract of Curcuma longa in carbon tetra chloride intoxicated Swiss albino mice. Asian Pac J Trop Biomed 2011 Jun; 1(3): 1939. https://doi.org/10.1016/S2221-1691(11)60026-9.

    • Search Google Scholar
    • Export Citation
  • 16.

    Ibrahim J, Yusuf A, Abdulrasheed-Adeleke T, Lawal B, Adewuyi A. Antioxidant and hepatoprotective potentials of curcuminoid isolates from turmeric (Curcuma longa) rhizome on CCl 4 -induced hepatic damage in Wistar rats. J Taibah Univ Sci 2020; 14(1): 908915. https://doi.org/10.1080/16583655.2020.1790928.

    • Search Google Scholar
    • Export Citation
  • 17.

    Wan XY, Luo M, Li XD, He P. Hepatoprotective and anti-hepatocarcinogenic effects of glycyrrhizin and matrine. Chem Biol Interact 2009 Sep 14; 181(1): 159. https://doi.org/10.1016/j.cbi.2009.04.013.

    • Search Google Scholar
    • Export Citation
  • 18.

    Féher J, Lengyel G. Silymarin in the prevention and treatment of liver diseases and primary liver cancer. Curr Pharm Biotechnol 2012 Jan; 13(1): 2107. https://doi.org/10.2174/138920112798868818.

    • Search Google Scholar
    • Export Citation
  • 19.

    Gillessen A, Schmidt HH. Silymarin as supportive treatment in liver diseases: a narrative review. Adv Ther 2020 Apr; 37(4): 12791301. https://doi.org/10.1007/s12325-020-01251-y.

    • Search Google Scholar
    • Export Citation
  • 20.

    Ahmad MF, Ahmad FA, Zeyaullah M, Alsayegh AA, Mahmood SE, AlShahrani AM, et al. Ganoderma lucidum: novel insight into hepatoprotective potential with mechanisms of action. Nutrients 2023 Apr 13; 15(8): 1874. https://doi.org/10.3390/nu15081874.

    • Search Google Scholar
    • Export Citation
  • 21.

    Rocchi E, Borghi A, Paolillo F, Pradelli M, Casalgrandi G. Carotenoids and liposoluble vitamins in liver cirrhosis. J Lab Clin Med 1991 Aug; 118(2): 17685.

    • Search Google Scholar
    • Export Citation
  • 22.

    Carroll ML, Herman B, Willem T, Oscar F, Gilbert RC. B-complex vitamins in liver disease of the alcoholic. The Am J Clin Nutr 1965; 16(4): 33946. https://doi.org/10.7326/0003-4819-60-4-721_1.

    • Search Google Scholar
    • Export Citation
  • 23.

    Türkdoğan MK, Ağaoğlu Z, Yener Z, Sekeroğlu R, Akkan HA, Avci ME. The role of antioxidant vitamins (C and E), selenium and Nigella sativa in the prevention of liver fibrosis and cirrhosis in rabbits: new hopes. Dtsch Tierarztl Wochenschr 2001 Feb; 108(2): 713.

    • Search Google Scholar
    • Export Citation
  • 24.

    Zaidi SM, Al-Qirim TM, Banu N. Effects of antioxidant vitamins on glutathione depletion and lipid peroxidation induced by restraint stress in the rat liver. Drugs R D 2005; 6(3): 15765. https://doi.org/10.2165/00126839-200506030-00004.

    • Search Google Scholar
    • Export Citation
  • 25.

    Veraldi S, Pietrobattista A, Liccardo D, Basso MS, Mosca A, Alterio T, et al. Fat soluble vitamins deficiency in pediatric chronic liver disease: the impact of liver transplantation. Dig Liver Dis 2020 Mar; 52(3): 308313. https://doi.org/10.1016/j.dld.2019.10.005.

    • Search Google Scholar
    • Export Citation
  • 26.

    Adikwu E, Deo O. Hepatoprotective effect of vitamin C (ascorbic acid). Pharmacol Pharm 2013; 4(1): 8492. https://doi.org/10.4236/pp.2013.41012.

    • Search Google Scholar
    • Export Citation
  • 27.

    Moriwaki H, Miwa Y, Tajika M, Kato M, Fukushima H, Shiraki M. Branched-chain amino acids as a protein- and energy-source in liver cirrhosis. Biochem Biophys Res Commun 2004 Jan 9; 313(2): 4059. https://doi.org/10.1016/j.bbrc.2003.07.016.

    • Search Google Scholar
    • Export Citation
  • 28.

    Nishitani S, Takehana K, Fujitani S, Sonaka I. Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol 2005 Jun; 288(6): G1292300. https://doi.org/10.1152/ajpgi.00510.2003.

    • Search Google Scholar
    • Export Citation
  • 29.

    Muto Y, Sato S, Watanabe A, Moriwaki H, Suzuki K, Kato A, et al. Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis. Hepatol Res 2006 Jul; 35(3): 20414. https://doi.org/10.1016/j.hepres.2006.04.007.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kawaguchi T, Taniguchi E, Sata M. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis. Nutr Clin Pract 2013 Oct; 28(5): 5808. https://doi.org/10.1177/0884533613496432.

    • Search Google Scholar
    • Export Citation
  • 31.

    Yoshida T, Muto Y, Moriwaki H, Yamato M. Effect of long-term oral supplementation with branched-chain amino acid granules on the prognosis of liver cirrhosis. Gastroenterol Jpn 1989 Dec; 24(6): 6928. https://doi.org/10.1007/BF02774169.

    • Search Google Scholar
    • Export Citation
  • 32.

    Nikolova M, Slavchov R, Nikolova G. Nanotechnology in medicine. In: Hock F, Gralinski M, editors. Drug discovery and evaluation: methods in clinical pharmacology; 2020. p. 53346.

    • Search Google Scholar
    • Export Citation
  • 33.

    Pulavendran S, Rose C, Mandal AB. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice. J Nanobiotechnology 2011 Apr 28; 9: 15. https://doi.org/10.1186/1477-3155-9-15.

    • Search Google Scholar
    • Export Citation
  • 34.

    Zhang J, Shen H, Xu J, Liu L, Tan J, Li M, et al. Liver-targeted siRNA lipid nanoparticles treat hepatic cirrhosis by dual antifibrotic and anti-inflammatory activities. ACS Nano 2020 May 26; 14(5): 63056322. https://doi.org/10.1021/acsnano.0c02633.

    • Search Google Scholar
    • Export Citation
  • 35.

    Wang Y, Liu Y, Liu Y, Zhong J, Wang J, Sun L, et al. Remodeling liver microenvironment by L-arginine loaded hollow polydopamine nanoparticles for liver cirrhosis treatment. Biomaterials 2023 Apr; 295: 122028. https://doi.org/10.1016/j.biomaterials.2023.122028.

    • Search Google Scholar
    • Export Citation
  • 36.

    Wang M, Zhang M, Fu L, Lin J, Zhou X, Zhou P, et al. Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. Theranostics 2020 Jan 1; 10(1): 3649. https://doi.org/10.7150/thno.37301.

    • Search Google Scholar
    • Export Citation
  • 37.

    Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, et al. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015 Feb 14; 3(6): 939958. https://doi.org/10.1039/C4TB01611D.

    • Search Google Scholar
    • Export Citation
  • 38.

    Zhao H, Achreja A, Iessi E, Logozzi M, Mizzoni D, Di Raimo R, et al. The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta Rev Cancer 2018 Jan; 1869(1): 6477. https://doi.org/10.1016/j.bbcan.2017.11.005.

    • Search Google Scholar
    • Export Citation
  • 39.

    Saadeh HA, Mubarak MS. Hybrid drugs as potential combatants against drug-resistant microbes: a review. Curr Top Med Chem 2017; 17(8): 895906. https://doi.org/10.2174/1568026616666160927155251.

    • Search Google Scholar
    • Export Citation
  • 40.

    Zai W, Chen W, Wu Z, Jin X, Fan J, Zhang X, et al. Targeted interleukin-22 gene delivery in the liver by polymetformin and penetratin-based hybrid nanoparticles to treat nonalcoholic fatty liver disease. ACS Appl Mater Inter 2019 Feb 6; 11(5): 48424857. https://doi.org/10.1021/acsami.8b19717.

    • Search Google Scholar
    • Export Citation
  • 41.

    Ansari M, Rahman M, Alrobaian M, Almalki WH, Alharbi KS, Altowayan WM, et al. Caffeic acid loaded lipid polymer hybrid nanoparticles: ex vivo and pre-clinical evaluation against liver cirrhosis. J Cluster Sci 2023; 34: 17571768. https://doi.org/10.1007/s10876-022-02283-w.

    • Search Google Scholar
    • Export Citation
  • 42.

    Stadlbauer V, Wright G, Jalan R. Role of artificial liver support in hepatic encephalopathy. Metab Brain Dis 2009; 24: 1526. https://doi.org/10.1007/s11011-008-9117-2.

    • Search Google Scholar
    • Export Citation
  • 43.

    Mazariegos GV, Patzer JF II, Lopez RC, Giraldo M, Grogan TA, Devera ME, et al. First clinical use of a novel bioartificial liver support system (BLSS). Am J Transpl 2002; 2: 260266. https://doi.org/10.1034/j.1600-6143.2002.20311.x.

    • Search Google Scholar
    • Export Citation
  • 44.

    Miwa Y, Ellis AJ, Hughes RD, Langley PG, Wendon JA, Williams R. Effect of ELAD liver support on plasma HGF and TGF-beta 1 in acute liver failure. Int J Artif Organs 1996; 19: 240244. https://doi.org/10.1177/039139889601900406.

    • Search Google Scholar
    • Export Citation
  • 45.

    Stadlbauer V, Wright GA, Banaji M, Mukhopadhya A, Mookerjee RP, Moore K, et al. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology 2008 Jan; 134(1): 1119. https://doi.org/10.1053/j.gastro.2007.10.055.

    • Search Google Scholar
    • Export Citation
  • 46.

    Sen S, Rose C, Ytrebo LM. Effect of albumin dialysis on intracranial pressure increase in pigs with acute liver failure: a randomized study. Crit Care Med 2006; 34: 158164. https://doi.org/10.1097/01.CCM.0000196203.39832.3C.

    • Search Google Scholar
    • Export Citation
  • 47.

    Doria C, Marino IR. Bacteremia using the molecular adsorbent recirculating system in patients bridged to liver transplantation. Exp Clin Transpl 2005; 3: 289292.

    • Search Google Scholar
    • Export Citation
  • 48.

    Hughes RD, Nicolaou N, Langley PG, Ellis AJ, Wendon JA, Williams R. Plasma cytokine levels and coagulation and complement activation during use of the extracorporeal liver assist device in acute liver failure. Artif Organs 1998; 22: 854858. https://doi.org/10.1046/j.1525-1594.1998.06162.x.

    • Search Google Scholar
    • Export Citation
  • 49.

    Harris J. On cloning; 2004.

  • 50.

    Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 2002 Jul; 20(7): 68996. https://doi.org/10.1038/nbt703.

    • Search Google Scholar
    • Export Citation
  • 51.

    Aebischer P, Ip TK, Panol G, Galletti PM. The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing. Life Support Syst 1987 Apr-Jun; 5(2): 15968.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 0 0 0
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 40 6 6
Mar 2024 799 41 65
Apr 2024 234 7 11
May 2024 0 0 0