Authors:
Yihan Ni Institute of Sports Science, Sichuan University, Chengdu, China

Search for other papers by Yihan Ni in
Current site
Google Scholar
PubMed
Close
,
Xiangdeng Lai Institute of Sports Science, Sichuan University, Chengdu, China

Search for other papers by Xiangdeng Lai in
Current site
Google Scholar
PubMed
Close
,
Lin Li Institute of Sports Science, Sichuan University, Chengdu, China

Search for other papers by Lin Li in
Current site
Google Scholar
PubMed
Close
,
Jingquan Sun Institute of Sports Science, Sichuan University, Chengdu, China
School of Physical Education and Sports, Sichuan University, Chengdu, China

Search for other papers by Jingquan Sun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4600-4483
,
Yaqian Qu Institute of Sports Science, Sichuan University, Chengdu, China

Search for other papers by Yaqian Qu in
Current site
Google Scholar
PubMed
Close
,
Siyu Chen Institute of Sports Science, Sichuan University, Chengdu, China

Search for other papers by Siyu Chen in
Current site
Google Scholar
PubMed
Close
, and
Hao Zhang Chengdu College of Arts and Sciences, Sichuan University, Chengdu, Sichuan, China

Search for other papers by Hao Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lactate, a metabolite of exercise, plays a crucial role in the body. In these studies, we aimed to investigate the role of G protein-coupled receptor 81 (GPR81), a specific receptor for lactate, in regulating lipid storage in the gastrocnemius muscle of rats. To achieve this, we measured the impact of sodium 3-hydroxybutyrate (3-OBA) concentration and time on the cAMP-PKA signaling pathway in the gastrocnemius muscles of rats. Our investigation involved determining the effects of administering 3-OBA at a concentration of 3 mmol L−1 just 15 min before exercise. As expected, exercise led to a notable increase in intramuscular lactate concentration in rats. However, injecting 3-OBA prior to exercise yielded intriguing results. It not only further augmented the cAMP-PKA signaling pathway but also boosted the expression of lipolysis-related proteins such as hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). Simultaneously, it decreased the expression of fat-synthesizing proteins, including acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), while increasing the protein expression of cytochrome c oxidase subunit Ⅳ(COX Ⅳ) and the activity of citrate synthetase (CS). Unfortunately, there was no significant change observed in intramuscular triglyceride (IMTG) content. In summary, our findings shed light on the role of lactate in partially regulating intramuscular triglycerides during exercise.

  • 1.

    Wolfe RR, Klein S, Carraro F, Weber JM. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol 1990; 258(2 Pt 1): E3829. https://doi.org/10.1152/ajpendo.1990.258.2.E382.

    • Search Google Scholar
    • Export Citation
  • 2.

    Abernethy PJ, Thayer R, Taylor AW. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A Review Sports Med 1990; 10(6): 36589. https://doi.org/10.2165/00007256-199010060-00004.

    • Search Google Scholar
    • Export Citation
  • 3.

    Ranallo RF, Rhodes EC. Lipid metabolism during exercise. Sports Med 1998; 26(1): 2942. https://doi.org/10.2165/00007256-199826010-00003.

    • Search Google Scholar
    • Export Citation
  • 4.

    Hargreaves M. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol 2000; 27(3): 2258. https://doi.org/10.1046/j.1440-1681.2000.03225.x.

    • Search Google Scholar
    • Export Citation
  • 5.

    Ament W, Verkerke GJ. Exercise and fatigue. Sports Med 2009; 39(5): 389422. https://doi.org/10.2165/00007256-200939050-00005.

  • 6.

    Ahmed K, Tunaru S, Tang C, Muller M, Gille A, Sassmann A, et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab 2010; 11(4): 3119. https://doi.org/10.1016/j.cmet.2010.02.012.

    • Search Google Scholar
    • Export Citation
  • 7.

    Langin D. Adipose tissue lipolysis revisited (again!): lactate involvement in insulin antilipolytic action. Cell Metab 2010; 11(4): 2423. https://doi.org/10.1016/j.cmet.2010.03.003.

    • Search Google Scholar
    • Export Citation
  • 8.

    Chen S, Zhou L, Sun J, Qu Y, Chen M. The role of cAMP-PKA pathway in lactate-induced intramuscular triglyceride accumulation and mitochondria content increase in mice. Front Physiol 2021; 12: 709135. https://doi.org/10.3389/fphys.2021.709135.

    • Search Google Scholar
    • Export Citation
  • 9.

    Zhou L, Chen SY, Han HJ, Sun JQ. Lactate augments intramuscular triglyceride accumulation and mitochondrial biogenesis in rats. J Biol Regul Homeost Agents 2021; 35(1): 10515. https://doi.org/10.23812/20-624-A.

    • Search Google Scholar
    • Export Citation
  • 10.

    Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem 2009; 284(5): 281122. https://doi.org/10.1074/jbc.M806409200.

    • Search Google Scholar
    • Export Citation
  • 11.

    Nikooie R, Samaneh S. Exercise-induced lactate accumulation regulates intramuscular triglyceride metabolism via transforming growth factor-beta1 mediated pathways. Mol Cell Endocrinol 2016; 419: 24451. https://doi.org/10.1016/j.mce.2015.10.024.

    • Search Google Scholar
    • Export Citation
  • 12.

    Amorim MF, dos Santos JA, Hirabara SM, Nascimento E, de Souza SL, de Castro RM, et al. Can physical exercise during gestation attenuate the effects of a maternal perinatal low-protein diet on oxygen consumption in rats? Exp Physiol 2009; 94(8): 90613. https://doi.org/10.1113/expphysiol.2009.047621.

    • Search Google Scholar
    • Export Citation
  • 13.

    Thirupathi A, da Silva Pieri BL, Queiroz J, Rodrigues MS, de Bem Silveira G, de Souza DR, et al. Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. J Physiol Biochem 2019; 75(1): 1018. https://doi.org/10.1007/s13105-019-00663-x.

    • Search Google Scholar
    • Export Citation
  • 14.

    Gold M, Miller HI, Issekutz B, Jr., Spitzer JJ. Effect of exercise and lactic acid infusion on individual free fatty acids of plasma. Am J Physiol 1963; 205(5): 9024. https://doi.org/10.1152/ajplegacy.1963.205.5.902.

    • Search Google Scholar
    • Export Citation
  • 15.

    Bjorntorp P. The effect of lactic acid on adipose tissue metabolism in vitro. Acta Med Scand 1965; 178(2): 2535. https://doi.org/10.1111/j.0954-6820.1965.tb04268.x.

    • Search Google Scholar
    • Export Citation
  • 16.

    Boyd AE, 3rd, Giamber SR, Mager M, Lebovitz HE. Lactate inhibition of lipolysis in exercising man. Metabolism 1974; 23(6): 53142. https://doi.org/10.1016/0026-0495(74)90081-x.

    • Search Google Scholar
    • Export Citation
  • 17.

    Cai TQ, Ren N, Jin L, Cheng K, Kash S, Chen R, et al. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun 2008; 377(3): 98791. https://doi.org/10.1016/j.bbrc.2008.10.088.

    • Search Google Scholar
    • Export Citation
  • 18.

    Ishihara S, Hata K, Hirose K, Okui T, Toyosawa S, Uzawa N, et al. The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep 2022; 12(1): 6261. https://doi.org/10.1038/s41598-022-10143-w.

    • Search Google Scholar
    • Export Citation
  • 19.

    Rooney K, Trayhurn P. Lactate and the GPR81 receptor in metabolic regulation: implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br J Nutr 2011; 106(9): 13106. https://doi.org/10.1017/S0007114511004673.

    • Search Google Scholar
    • Export Citation
  • 20.

    Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 2019; 20(3): 13755. https://doi.org/10.1038/s41580-018-0085-z.

    • Search Google Scholar
    • Export Citation
  • 21.

    Noland RC. Exercise and regulation of lipid metabolism. Prog Mol Biol Transl Sci 2015; 135: 3974. https://doi.org/10.1016/bs.pmbts.2015.06.017.

    • Search Google Scholar
    • Export Citation
  • 22.

    Liu C, Kuei C, Zhu J, Yu J, Zhang L, Shih A, et al. 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes. J Pharmacol Exp Ther 2012; 341(3): 794801. https://doi.org/10.1124/jpet.112.192799.

    • Search Google Scholar
    • Export Citation
  • 23.

    Khatib-Massalha E, Bhattacharya S, Massalha H, Biram A, Golan K, Kollet O, et al. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat Commun 2020; 11(1): 3547. https://doi.org/10.1038/s41467-020-17402-2.

    • Search Google Scholar
    • Export Citation
  • 24.

    Longhitano L, Forte S, Orlando L, Grasso S, Barbato A, Vicario N, et al. The crosstalk between GPR81/IGFBP6 promotes breast cancer progression by modulating lactate metabolism and oxidative stress. Antioxidants (Basel) 2022; 11(2): 275. https://doi.org/10.3390/antiox11020275.

    • Search Google Scholar
    • Export Citation
  • 25.

    Lee YS, Kim TY, Kim Y, Lee SH, Kim S, Kang SW, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 2018; 24(6): 83346 e6. https://doi.org/10.1016/j.chom.2018.11.002.

    • Search Google Scholar
    • Export Citation
  • 26.

    Morak M, Schmidinger H, Riesenhuber G, Rechberger GN, Kollroser M, Haemmerle G, et al. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues. Mol Cell Proteomics 2012; 11(12): 177789. https://doi.org/10.1074/mcp.M111.015743.

    • Search Google Scholar
    • Export Citation
  • 27.

    Watt MJ, Spriet LL. Regulation and role of hormone-sensitive lipase activity in human skeletal muscle. Proc Nutr Soc 2004; 63(2): 31522. https://doi.org/10.1079/PNS2004360.

    • Search Google Scholar
    • Export Citation
  • 28.

    Donsmark M, Langfort J, Holm C, Ploug T, Galbo H. Hormone-sensitive lipase as mediator of lipolysis in contracting skeletal muscle. Exerc Sport Sci Rev 2005; 33(3): 12733. https://doi.org/10.1097/00003677-200507000-00005.

    • Search Google Scholar
    • Export Citation
  • 29.

    Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 2006; 7(1): 10613. https://doi.org/10.1038/sj.embor.7400559.

    • Search Google Scholar
    • Export Citation
  • 30.

    Zhao S, He L, Zhang M, Liu X, Jin G. Effect of salt promote the muscle triglyceride hydrolysis during dry-salting by inducing the phosphorylation of adipose tissue triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) and lipid droplets splitting. Food Chem 2020; 327: 127061. https://doi.org/10.1016/j.foodchem.2020.127061.

    • Search Google Scholar
    • Export Citation
  • 31.

    Obrowsky S, Chandak PG, Patankar JV, Povoden S, Schlager S, Kershaw EE, et al. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARalpha signaling. J Lipid Res 2013; 54(2): 42535. https://doi.org/10.1194/jlr.M031716.

    • Search Google Scholar
    • Export Citation
  • 32.

    Zhou L, Li Y, Nie T, Feng S, Yuan J, Chen H, et al. Clenbuterol inhibits SREBP-1c expression by activating CREB1. J Biochem Mol Biol 2007; 40(4): 52531. https://doi.org/10.5483/bmbrep.2007.40.4.525.

    • Search Google Scholar
    • Export Citation
  • 33.

    Ota K, Komuro A, Amano H, Kanai A, Ge K, Ueda T, et al. High fat diet triggers a reduction in body fat mass in female mice deficient for Utx demethylase. Sci Rep 2019; 9(1): 10036. https://doi.org/10.1038/s41598-019-46445-9.

    • Search Google Scholar
    • Export Citation
  • 34.

    Ekman A, Hayden DM, Dehesh K, Bulow L, Stymne S. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds. J Exp Bot 2008; 59(15): 424757. https://doi.org/10.1093/jxb/ern266.

    • Search Google Scholar
    • Export Citation
  • 35.

    Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Lee WM. Regulation of acetyl-CoA carboxylase. Biochem Soc Trans 2006; 34(Pt 2): 2237. https://doi.org/10.1042/BST20060223.

    • Search Google Scholar
    • Export Citation
  • 36.

    Underwood KR, Tong J, Zhu MJ, Shen QW, Means WJ, Ford SP, et al. Relationship between kinase phosphorylation, muscle fiber typing, and glycogen accumulation in longissimus muscle of beef cattle with high and low intramuscular fat. J Agric Food Chem 2007; 55(23): 9698703. https://doi.org/10.1021/jf071573z.

    • Search Google Scholar
    • Export Citation
  • 37.

    Labrie M, Lalonde S, Najyb O, Thiery M, Daneault C, Des Rosiers C, et al. Apolipoprotein D Transgenic mice develop hepatic steatosis through activation of PPARgamma and fatty acid uptake. PLoS One 2015; 10(6): e0130230. https://doi.org/10.1371/journal.pone.0130230.

    • Search Google Scholar
    • Export Citation
  • 38.

    Sun Y, Song Y, Liu C, Geng J. LncRNA NEAT1-MicroRNA-140 axis exacerbates nonalcoholic fatty liver through interrupting AMPK/SREBP-1 signaling. Biochem Biophys Res Commun 2019; 516(2): 58490. https://doi.org/10.1016/j.bbrc.2019.06.104.

    • Search Google Scholar
    • Export Citation
  • 39.

    Semenkovich CF. Regulation of fatty acid synthase (FAS). Prog Lipid Res 1997; 36(1): 4353. https://doi.org/10.1016/s0163-7827(97)00003-9.

    • Search Google Scholar
    • Export Citation
  • 40.

    Griffin MJ, Wong RH, Pandya N, Sul HS. Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter. J Biol Chem 2007; 282(8): 545367. https://doi.org/10.1074/jbc.M610566200.

    • Search Google Scholar
    • Export Citation
  • 41.

    Najjar SM, Yang Y, Fernstrom MA, Lee SJ, Deangelis AM, Rjaily GA, et al. Insulin acutely decreases hepatic fatty acid synthase activity. Cell Metab 2005; 2(1): 4353. https://doi.org/10.1016/j.cmet.2005.06.001.

    • Search Google Scholar
    • Export Citation
  • 42.

    Xu J, Li L, Qian Z, Hong J, Shen S, Huang W. Reduction of PTP1B by RNAi upregulates the activity of insulin controlled fatty acid synthase promoter. Biochem Biophys Res Commun 2005; 329(2): 53843. https://doi.org/10.1016/j.bbrc.2005.02.016.

    • Search Google Scholar
    • Export Citation
  • 43.

    Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 2014; 24(12): 76170. https://doi.org/10.1016/j.tcb.2014.08.005.

    • Search Google Scholar
    • Export Citation
  • 44.

    McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006; 16(14):R55160. https://doi.org/10.1016/j.cub.2006.06.054.

    • Search Google Scholar
    • Export Citation
  • 45.

    Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006; 27(7): 72835. https://doi.org/10.1210/er.2006-0037.

    • Search Google Scholar
    • Export Citation
  • 46.

    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98(1): 11524. https://doi.org/10.1016/S0092-8674(00)80611-X.

    • Search Google Scholar
    • Export Citation
  • 47.

    Wang Y, Kang Y, Qi C, Zhang T, Zhao H, Ji X, et al. Pentoxifylline enhances antioxidative capability and promotes mitochondrial biogenesis for improving age-related behavioral deficits. Aging (Albany NY) 2020; 12(24): 25487504. https://doi.org/10.18632/aging.104155.

    • Search Google Scholar
    • Export Citation
  • 48.

    Zsengeller ZK, Rosen S. The use of cytochrome C oxidase enzyme activity and immunohistochemistry in defining mitochondrial injury in kidney disease. J Histochem Cytochem 2016; 64(9): 54655. https://doi.org/10.1369/0022155416660291.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2023 0 0 0
Nov 2023 0 0 0
Dec 2023 0 0 0
Jan 2024 46 6 8
Feb 2024 929 6 10
Mar 2024 733 25 43
Apr 2024 141 1 2