Authors:
Jinhua Mo Department of Thyroid Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China

Search for other papers by Jinhua Mo in
Current site
Google Scholar
PubMed
Close
,
Zengyi Gong Department of Thyroid Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China

Search for other papers by Zengyi Gong in
Current site
Google Scholar
PubMed
Close
,
Hong Liu Department of Thyroid Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China

Search for other papers by Hong Liu in
Current site
Google Scholar
PubMed
Close
,
Lian Zhou Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China

Search for other papers by Lian Zhou in
Current site
Google Scholar
PubMed
Close
, and
Yanguang Zhao Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China

Search for other papers by Yanguang Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5688-0041
Restricted access

Abstract

Background

It has been reported that long non-coding RNA THAP9-AS1 exerts carcinogenic role by mediating miRNAs and target genes in various human cancers. However, whether THAP9-AS1 influences the progression of nasopharyngeal carcinoma (NPC) remains unknown.

Methods

The transcriptional levels of THAP9-AS1 and miR-185-5p were estimated via quantitative real time polymerase chain reaction (qRT-PCR) assay. The protein level of SOX13 was detected with western blotting assay. Additionally, methyl thiazolyl tetrazolium (MTT) assay as well as colony formation assay were utilized to measure cell growth. The apoptotic cells were observed by employing Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining analysis, and transwell assay was introduced to test cell migration in addition to invasion. Moreover, the relationship between miR-185-5p and THAP9-AS1 or SOX13 was estimated through dual-luciferase reporter gene assay.

Results

THAP9-AS1 was overexpressed in head and neck squamous cell carcinoma (HNSCC) tissues and NPC cells. Besides, silencing of THAP9-AS1 depressed the life processes of NPC cells including cell growth, migration as well as invasion but facilitated cell apoptosis. Further investigation proved that miR-185-5p was the direct target of THAP9-AS1. Besides, the knockdown of THAP9-AS1 notably reduced the transcriptional level of miR-185-5p. Furthermore, THAP9-AS1 served as a sponge of miR-185-5p to modulate the expression of SOX13, which regulated the development of NPC cells.

Conclusion

This work verified that THAP9-AS1 promoted NPC cell progression at least partly by mediating the miR-185-5p/SOX13 axis.

  • 1.

    Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, et al. Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res 2019; 79(18): 461226. https://doi.org/10.1158/0008-5472.CAN-19-0799.

    • Search Google Scholar
    • Export Citation
  • 2.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394424. https://doi.org/10.3322/caac.21492.

    • Search Google Scholar
    • Export Citation
  • 3.

    Thromboembolism in cancer patients. What should anaesthesiologists know. Signa Vitae 2021; 17(S1). https://doi.org/10.22514/sv.2021.196.

    • Search Google Scholar
    • Export Citation
  • 4.

    Sun Y, Li W-F, Chen N-Y, Zhang N, Hu G-Q, Xie F-Y, et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial. The Lancet Oncol 2016; 17(11): 150920. https://doi.org/10.1016/s1470-2045(16)30410-7.

    • Search Google Scholar
    • Export Citation
  • 5.

    Zhong Q, Wang Z, Liao X, Wu R, Guo X. LncRNA GAS5/miR4465 axis regulates the malignant potential of nasopharyngeal carcinoma by targeting COX2. Cell Cycle 2020; 19(22): 300417. https://doi.org/10.1080/15384101.2020.1816280.

    • Search Google Scholar
    • Export Citation
  • 6.

    Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 2016; 937: 317. https://doi.org/10.1007/978-3-319-42059-2_1.

    • Search Google Scholar
    • Export Citation
  • 7.

    Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 2016; 14(1): 4254. https://doi.org/10.1016/j.gpb.2015.09.006.

    • Search Google Scholar
    • Export Citation
  • 8.

    Jiang N, Zhao L, Zong D, Yin L, Wu L, Chen C, et al. Long non-coding RNA LUADT1 promotes nasopharyngeal carcinoma cell proliferation and invasion by downregulating miR-1207-5p. Bioengineered 2021; 12(2): 1071628. https://doi.org/10.1080/21655979.2021.2001952.

    • Search Google Scholar
    • Export Citation
  • 9.

    Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol 2013; 34(2): 61320. https://doi.org/10.1007/s13277-013-0658-6.

    • Search Google Scholar
    • Export Citation
  • 10.

    Guo Z, Wang YH, Xu H, Yuan CS, Zhou HH, Huang WH, et al. LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma. Cell Death Dis 2021; 12(1): 69. https://doi.org/10.1038/s41419-020-03302-2.

    • Search Google Scholar
    • Export Citation
  • 11.

    Wang Y, Chen W, Lian J, Zhang H, Yu B, Zhang M, et al. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1alpha. Cell Death Differ 2020; 27(2): 695710. https://doi.org/10.1038/s41418-019-0381-y.

    • Search Google Scholar
    • Export Citation
  • 12.

    Li N, Yang G, Luo L, Ling L, Wang X, Shi L, et al. lncRNA THAP9-AS1 promotes pancreatic ductal adenocarcinoma growth and leads to a poor clinical outcome via sponging miR-484 and interacting with YAP. Clin Cancer Res 2020; 26(7): 173648. https://doi.org/10.1158/1078-0432.CCR-19-0674.

    • Search Google Scholar
    • Export Citation
  • 13.

    Jia W, Zhang J, Ma F, Hao S, Li X, Guo R, et al. Long noncoding RNA THAP9-AS1 is induced by Helicobacter pylori and promotes cell growth and migration of gastric cancer. Onco Targets Ther 2019; 12: 665363. https://doi.org/10.2147/OTT.S201832.

    • Search Google Scholar
    • Export Citation
  • 14.

    Cheng J, Ma H, Yan M, Xing W. THAP9-AS1/miR-133b/SOX4 positive feedback loop facilitates the progression of esophageal squamous cell carcinoma. Cell Death Dis 2021; 12(4): 401. https://doi.org/10.1038/s41419-021-03690-z.

    • Search Google Scholar
    • Export Citation
  • 15.

    Li XX, Liang XJ, Zhou LY, Liu RJ, Bi W, Zhang S, et al. Analysis of differential expressions of long non-coding RNAs in nasopharyngeal carcinoma using next-generation deep sequencing. J Cancer 2018; 9(11): 194350. https://doi.org/10.7150/jca.23481.

    • Search Google Scholar
    • Export Citation
  • 16.

    Lau P, Frigerio CS, De Strooper B. Variance in the identification of microRNAs deregulated in Alzheimer's disease and possible role of lincRNAs in the pathology: the need of larger datasets. Ageing Res Rev 2014; 17: 4353. https://doi.org/10.1016/j.arr.2014.02.006.

    • Search Google Scholar
    • Export Citation
  • 17.

    Zhang Q, Zhou L, Xie H, Zhang H, Gao X. HAGLR aggravates neuropathic pain and promotes inflammatory response and apoptosis of lipopolysaccharide-treated SH-SY5Y cells by sequestering miR-182-5p from ATAT1 and activating NLRP3 inflammasome. Neurochem Int 2021; 145: 105001. https://doi.org/10.1016/j.neuint.2021.105001.

    • Search Google Scholar
    • Export Citation
  • 18.

    Liu C, Li G, Ren S, Su Z, Wang Y, Tian Y, et al. miR-185-3p regulates the invasion and metastasis of nasopharyngeal carcinoma by targeting WNT2B in vitro. Oncol Lett 2017; 13(4): 26316. https://doi.org/10.3892/ol.2017.5778.

    • Search Google Scholar
    • Export Citation
  • 19.

    Jiao H, Fang F, Fang T, You Y, Feng M, Wang X, et al. SOX13 regulates cancer stem-like properties and tumorigenicity in hepatocellular carcinoma cells. Am J Cancer Res 2021; 11(3): 760772.

    • Search Google Scholar
    • Export Citation
  • 20.

    Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017; 19(8): 64958. https://doi.org/10.1016/j.neo.2017.05.002.

    • Search Google Scholar
    • Export Citation
  • 21.

    Lou W, Chen J, Ding B, Chen D, Zheng H, Jiang D, et al. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation. J Transl Med 2018; 16(1): 266. https://doi.org/10.1186/s12967-018-1639-8.

    • Search Google Scholar
    • Export Citation
  • 22.

    Zhou Y, Hu W. Dedicator of cytokinesis protein 2 knockdown ameliorates LPS-induced acute lung injury by modulating Rac1/2 activity. Allergol Immunopathol (Madr) 2022; 50(3): 3846. https://doi.org/10.15586/aei.v50i3.543.

    • Search Google Scholar
    • Export Citation
  • 23.

    He C, Liu Y, Li J, Zheng X, Liang J, Cui G, et al. LncRNA RPSAP52 promotes cell proliferation and inhibits cell apoptosis via modulating miR-665/STAT3 in gastric cancer. Bioengineered 2022; 13(4): 8699711. https://doi.org/10.1080/21655979.2022.2054754.

    • Search Google Scholar
    • Export Citation
  • 24.

    Expression of HIWI in endometrial carcinoma tissues and its clinical significance. Eur J Gynaecol Oncol 2020; 41(2). https://doi.org/10.31083/j.ejgo.2020.02.4916.

    • Search Google Scholar
    • Export Citation
  • 25.

    Chen Y-P, Chan ATC, Le Q-T, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. The Lancet 2019; 394(10192): 6480. https://doi.org/10.1016/s0140-6736(19)30956-0.

    • Search Google Scholar
    • Export Citation
  • 26.

    Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci 2018; 109(7): 2093100. https://doi.org/10.1111/cas.13642.

    • Search Google Scholar
    • Export Citation
  • 27.

    Statement of Retraction. LncRNA UCA1 affects epithelial-mesenchymal transition, invasion, migration and apoptosis of nasopharyngeal carcinoma cells. Cell Cycle 2022; 21(8): 874. https://doi.org/10.1080/15384101.2022.2046808.

    • Search Google Scholar
    • Export Citation
  • 28.

    Tian X, Liu Y, Wang Z, Wu S. lncRNA SNHG8 promotes aggressive behaviors of nasopharyngeal carcinoma via regulating miR-656-3p/SATB1 axis. Biomed Pharmacother 2020; 131: 110564. https://doi.org/10.1016/j.biopha.2020.110564.

    • Search Google Scholar
    • Export Citation
  • 29.

    Du M, Hu X, Jiang X, Yin L, Chen J, Wen J, et al. LncRNA EPB41L4A-AS2 represses nasopharyngeal carcinoma metastasis by binding to YBX1 in the nucleus and sponging MiR-107 in the cytoplasm. Int J Biol Sci 2021; 17(8): 196378. https://doi.org/10.7150/ijbs.55557.

    • Search Google Scholar
    • Export Citation
  • 30.

    Yoon JH, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 2014; 34: 914. https://doi.org/10.1016/j.semcdb.2014.05.015.

    • Search Google Scholar
    • Export Citation
  • 31.

    Degerli E, Torun V, Cansaran-Duman D. miR-185-5p response to usnic acid suppresses proliferation and regulating apoptosis in breast cancer cell by targeting Bcl2. Biol Res 2020; 53(1): 19. https://doi.org/10.1186/s40659-020-00285-4.

    • Search Google Scholar
    • Export Citation
  • 32.

    Wen H, Liu Z, Tang J, Bu L. MiR-185-5p targets RAB35 gene to regulate tumor cell-derived exosomes-mediated proliferation, migration and invasion of non-small cell lung cancer cells. Aging (Albany NY) 2021; 13(17): 2143521450.

    • Search Google Scholar
    • Export Citation
  • 33.

    Du F, Li X, Feng W, Qiao C, Chen J, Jiang M, et al. SOX13 promotes colorectal cancer metastasis by transactivating SNAI2 and c-MET. Oncogene 2020; 39(17): 352240. https://doi.org/10.1038/s41388-020-1233-4.

    • Search Google Scholar
    • Export Citation
  • 34.

    Tang J, Tian Z, Liao X, Wu G. SOX13/TRIM11/YAP axis promotes the proliferation, migration and chemoresistance of anaplastic thyroid cancer. Int J Biol Sci 2021; 17(2): 41729. https://doi.org/10.7150/ijbs.54194.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 126 8 8
Feb 2024 232 3 4
Mar 2024 1574 29 45
Apr 2024 1546 8 9
May 2024 135 2 3
Jun 2024 121 1 1
Jul 2024 0 0 0