Authors:
Tingting Yan Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China

Search for other papers by Tingting Yan in
Current site
Google Scholar
PubMed
Close
,
Guangxin Lu Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China

Search for other papers by Guangxin Lu in
Current site
Google Scholar
PubMed
Close
,
Rui Shang Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China

Search for other papers by Rui Shang in
Current site
Google Scholar
PubMed
Close
,
Junhua Hu Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China

Search for other papers by Junhua Hu in
Current site
Google Scholar
PubMed
Close
,
Chaobei Zhu Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China

Search for other papers by Chaobei Zhu in
Current site
Google Scholar
PubMed
Close
, and
Lingli Jin Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China

Search for other papers by Lingli Jin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0006-4970-8335
Restricted access

Abstract

Objective

Gastric cancer is the most frequent gastrointestinal malignancy with a poor prognosis. Rac GTPase activation protein 1 (RACGAP1) is a novel tumor promotor, whose detailed effect on gastric cancer remains to be further elucidated. Hence, this study identifies the action of RACGAP1 on gastric cancer and investigates the potential mechanism.

Methods

RACGAP1 expression in gastric cancer was analyzed based on the data of The Cancer Genome Atlas (TCGA) database. Cell proliferation was measured by CCK-8 and colony formation assay. Cell migration and invasion were evaluated by transwell assay. Cell apoptosis was assessed by flow cytometry. Cell autophagy was evaluated via determining LC3.

Results

RACGAP1 presented at high level in gastric cancer cells. Overexpressed RACGAP1 potentiated gastric cancer cell proliferation, migration, and invasion. Besides, silenced RACGAP1 induced cell apoptosis and autophagy. Furthermore, RACGAP1 suppressed the expression of SIRT1 and Mfn2.

Conclusion

RACGAP1 was overexpressed in gastric cancer. RACGAP1 potentiated aggressive behaviors of gastric cancer, and suppressed cell apoptosis and autophagy via modulating SIRT1/Mfn2. RACGAP1 may be a valuable target in the treatment of gastric cancer.

  • 1.

    Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol 2019; 5(12): 174968. https://doi.org/10.1001/jamaoncol.2019.2996.

    • Search Google Scholar
    • Export Citation
  • 2.

    Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol 2020; 18(3): 53442. https://doi.org/10.1016/j.cgh.2019.07.045.

    • Search Google Scholar
    • Export Citation
  • 3.

    Xu J-L, Yuan L, Tang Y-C, Xu Z-Y, Xu H-D, Cheng X-D, et al. The role of autophagy in gastric cancer chemoresistance: friend or foe? Front Cell Dev Biol 2020; 3: 1484. https://doi.org/10.3389/fcell.2020.621428.

    • Search Google Scholar
    • Export Citation
  • 4.

    Yuan L, Xu Z-Y, Ruan S-M, Mo S, Qin J-J, Cheng X-D. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer 2020; 19(1): 122. https://doi.org/10.1186/s12943-020-01219-0.

    • Search Google Scholar
    • Export Citation
  • 5.

    Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai BC, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev 2017; 8(8): CD004064. https://doi.org/10.1002/14651858.CD004064.pub4.

    • Search Google Scholar
    • Export Citation
  • 6.

    Song X, Qi W, Guo J, Sun L, Ding A, Zhao G, et al. Immune checkpoint inhibitor combination therapy for gastric cancer: research progress. Oncol Lett 2020; 20(4): 46. https://doi.org/10.3892/ol.2020.11905.

    • Search Google Scholar
    • Export Citation
  • 7.

    Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang X-S, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015; 385(9972): 9771010. https://doi.org/10.1016/S0140-6736(14)62038-9.

    • Search Google Scholar
    • Export Citation
  • 8.

    Zhao W, Wang M, Wang C, Liu Y, Liu H, Luo S. RACGAP1 is transcriptionally regulated by E2F3, and its depletion leads to mitotic catastrophe in esophageal squamous cell carcinoma. Ann Transl Med 2020; 8(15): 950. https://doi.org/10.21037/atm-20-2901.

    • Search Google Scholar
    • Export Citation
  • 9.

    Lekomtsev S, Su KC, Pye VE, Blight K, Sundaramoorthy S, Takaki T, et al. Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature 2012; 492(7428): 2769. https://doi.org/10.1038/nature11773.

    • Search Google Scholar
    • Export Citation
  • 10.

    Yang X-M, Cao X-Y, He P, Li J, Feng M-X, Zhang Y-L, et al. Overexpression of Rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing hippo signaling to promote cytokinesis. Gastroenterology 2018; 155(4): 123349. e22. https://doi.org/10.1053/j.gastro.2018.07.010.

    • Search Google Scholar
    • Export Citation
  • 11.

    Mi S, Lin M, Brouwer-Visser J, Heim J, Smotkin D, Hebert T, et al. RNA-seq identification of RACGAP1 as a metastatic driver in uterine carcinosarcoma. Clin Cancer Res 2016; 22(18): 467686. https://doi.org/10.1158/1078-0432.CCR-15-2116.

    • Search Google Scholar
    • Export Citation
  • 12.

    Yin C, Toiyama Y, Okugawa Y, Shigemori T, Yamamoto A, Ide S, et al. Rac GTPase-Activating Protein 1 (RACGAP1) as an oncogenic enhancer in esophageal carcinoma. Oncology 2019; 97(3): 15563. https://doi.org/10.1159/000500592.

    • Search Google Scholar
    • Export Citation
  • 13.

    Imaoka H, Toiyama Y, Saigusa S, Kawamura M, Kawamoto A, Okugawa Y, et al. RacGAP1 expression, increasing tumor malignant potential, as a predictive biomarker for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis 2015; 36(3): 34654. https://doi.org/10.1093/carcin/bgu327.

    • Search Google Scholar
    • Export Citation
  • 14.

    Saigusa S, Tanaka K, Mohri Y, Ohi M, Shimura T, Kitajima T, et al. Clinical significance of RacGAP1 expression at the invasive front of gastric cancer. Gastric Cancer 2015; 18(1): 8492. https://doi.org/10.1007/s10120-014-0355-1.

    • Search Google Scholar
    • Export Citation
  • 15.

    Wang Z, Jensen MA, Zenklusen JC. A practical guide to The Cancer Genome Atlas (TCGA). Methods Mol Biol 2016; 1418: 11141. https://doi.org/10.1007/978-1-4939-3578-9_6.

    • Search Google Scholar
    • Export Citation
  • 16.

    Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98w102. https://doi.org/10.1093/nar/gkx247.

    • Search Google Scholar
    • Export Citation
  • 17.

    Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017; 19(8): 64958. https://doi.org/10.1016/j.neo.2017.05.002.

    • Search Google Scholar
    • Export Citation
  • 18.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 4028. https://doi.org/10.1006/meth.2001.1262.

    • Search Google Scholar
    • Export Citation
  • 19.

    Ren K, Zhou D, Wang M, Li E, Hou C, Su Y, et al. RACGAP1 Modulates ECT2-dependent mitochondrial quality control to drive breast cancer metastasis. Exp Cell Res 2021; 400(1): 112493. https://doi.org/10.1016/j.yexcr.2021.112493.

    • Search Google Scholar
    • Export Citation
  • 20.

    Bian R, Dang W, Song X, Liu L, Jiang C, Yang Y, et al. Rac GTPase activating protein 1 promotes gallbladder cancer via binding DNA ligase 3 to reduce apoptosis. Int J Biol Sci 2021; 17(9): 2167. https://doi.org/10.7150/ijbs.58857.

    • Search Google Scholar
    • Export Citation
  • 21.

    Wang C, Wang W, Liu Y, Yong M, Yang Y, Zhou H. Rac GTPase activating protein 1 promotes oncogenic progression of epithelial ovarian cancer. Cancer Sci 2018; 109(1): 8493. https://doi.org/10.1111/cas.13434.

    • Search Google Scholar
    • Export Citation
  • 22.

    Wang SM, Ooi LLP, Hui KM. Upregulation of Rac GTPase-activating protein 1 is significantly associated with the early recurrence of human hepatocellular carcinoma. Clin Cancer Res 2011; 17(18): 604051. https://doi.org/10.1158/1078-0432.CCR-11-0557.

    • Search Google Scholar
    • Export Citation
  • 23.

    He H, Huang J, Wu S, Jiang S, Liang L, Liu Y, et al. The roles of GTPase-activating proteins in regulated cell death and tumor immunity. J Hematol Oncol 2021; 14(1): 115. https://doi.org/10.1186/s13045-021-01184-1.

    • Search Google Scholar
    • Export Citation
  • 24.

    Yan H, Qiu C, Sun W, Gu M, Xiao F, Zou J, et al. Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy. Oncol Rep 2018; 39(4): 167181. https://doi.org/10.3892/or.2018.6252.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 268 8 10
Feb 2024 436 4 4
Mar 2024 472 30 48
Apr 2024 93 3 6
May 2024 163 3 5
Jun 2024 84 0 0
Jul 2024 0 0 0