Authors:
Natalia F. Sardi Laboratory of Pain Physiology, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil

Search for other papers by Natalia F. Sardi in
Current site
Google Scholar
PubMed
Close
,
Priscila Natume Laboratory of Pain Physiology, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil

Search for other papers by Priscila Natume in
Current site
Google Scholar
PubMed
Close
,
Thainá Watanabe Laboratory of Pain Physiology, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil

Search for other papers by Thainá Watanabe in
Current site
Google Scholar
PubMed
Close
,
Ana Carolina Pescador Laboratory of Pain Physiology, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil

Search for other papers by Ana Carolina Pescador in
Current site
Google Scholar
PubMed
Close
,
Karla E. Torres-Chavez Laboratory of Physiology, School of Medicine, Catholic University of Santa María, Arequipa, Peru

Search for other papers by Karla E. Torres-Chavez in
Current site
Google Scholar
PubMed
Close
,
Glaucia Tobaldini Laboratory of Pain Physiology, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
Primary Health Care Department, Municipality of Santos, Sao Paulo, Brazil

Search for other papers by Glaucia Tobaldini in
Current site
Google Scholar
PubMed
Close
, and
Luana Fischer Laboratory of Pain Physiology, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil

Search for other papers by Luana Fischer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1380-1128
Restricted access

Abstract

Poor sleep increases pain, at least in part, by disrupting endogenous pain modulation. However, the efficacy of endogenous analgesia in sleep-deprived subjects has never been tested. To assess this issue, we chose three different ways of triggering endogenous analgesia: (1) acupuncture, (2) acute stress, and (3) noxious stimulation, and compared their ability to decrease the pronociceptive effect induced by REM-SD (Rapid Eye Movement Sleep Deprivation) with that to decrease inflammatory hyperalgesia in the classical carrageenan model. First, we tested the ability of REM-SD to worsen carrageenan-induced hyperalgesia: A low dose of carrageenan (30 µg) in sleep-deprived Wistar rats resulted in a potentiated hyperalgesic effect that was more intense and longer-lasting than that induced by a higher standard dose of carrageenan (100 µg) or by REM-SD alone. Then, we found that (1) acupuncture, performed at ST36, completely reversed the pronociceptive effect induced by REM-SD or by carrageenan; (2) immobilization stress completely reversed the pronociceptive effect of REM-SD, while transiently inhibited carrageenan-induced hyperalgesia; (3) noxious stimulation of the forepaw by capsaicin also reversed the pronociceptive effect of REM-SD and persistently increased the nociceptive threshold above the baseline in carrageenan-treated animals. Therefore, acupuncture, stress, or noxious stimulation reversed the pronociceptive effect of REM-SD, while each intervention affected carrageenan-induced hyperalgesia differently. This study has shown that while sleep loss may disrupt endogenous pain modulation mechanisms, it does not prevent the activation of these mechanisms to induce analgesia in sleep-deprived individuals.

  • 1.

    Millan MJ. Descending control of pain. Prog Neurobiol 2002; 66(6): 355474. https://doi.org/10.1016/s0301-0082(02)00009-6.

  • 2.

    Yamamotova A. Endogenous antinociceptive system and potential ways to influence it. Physiol Res 2019; 68(Suppl 3): S195S205. https://doi.org/10.33549/physiolres.934351.

    • Search Google Scholar
    • Export Citation
  • 3.

    Staud R. Abnormal endogenous pain modulation is a shared characteristic of many chronic pain conditions. Expert Rev Neurother 2012; 12(5): 57785. https://doi.org/10.1586/ern.12.41.

    • Search Google Scholar
    • Export Citation
  • 4.

    Sribastav SS, Peiheng H, Jun L, Zemin L, Fuxin W, Jianru W, et al. Interplay among pain intensity, sleep disturbance and emotion in patients with non-specific low back pain. PeerJ 2017; 5: e3282. https://doi.org/10.7717/peerj.3282.

    • Search Google Scholar
    • Export Citation
  • 5.

    Karaman S, Karaman T, Dogru S, Onder Y, Citil R, Bulut YE, et al. Prevalence of sleep disturbance in chronic pain. Eur Rev Med Pharmacol Sci 2014; 18(17): 247581.

    • Search Google Scholar
    • Export Citation
  • 6.

    Cheatle MD, Foster S, Pinkett A, Lesneski M, Qu D, Dhingra L. Assessing and managing sleep disturbance in patients with chronic pain. Anesthesiol Clin 2016; 34(2): 37993. https://doi.org/10.1016/j.anclin.2016.01.007.

    • Search Google Scholar
    • Export Citation
  • 7.

    Morin CM, LeBlanc M, Daley M, Gregoire JP, Merette C. Epidemiology of insomnia: prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. Sleep Med 2006; 7(2): 12330. https://doi.org/10.1016/j.sleep.2005.08.008.

    • Search Google Scholar
    • Export Citation
  • 8.

    Taylor DJ, Mallory LJ, Lichstein KL, Durrence HH, Riedel BW, Bush AJ. Comorbidity of chronic insomnia with medical problems. Sleep 2007; 30(2): 2138. https://doi.org/10.1093/sleep/30.2.213.

    • Search Google Scholar
    • Export Citation
  • 9.

    Nascimento DC, Andersen ML, Hipolide DC, Nobrega JN, Tufik S. Pain hypersensitivity induced by paradoxical sleep deprivation is not due to altered binding to brain mu-opioid receptors. Behav Brain Res 2007; 178(2): 21620. https://doi.org/10.1016/j.bbr.2006.12.016.

    • Search Google Scholar
    • Export Citation
  • 10.

    Sardi NF, Lazzarim MK, Guilhen VA, Marcilio RS, Natume PS, Watanabe TC, et al. Chronic sleep restriction increases pain sensitivity over time in a periaqueductal gray and nucleus accumbens dependent manner. Neuropharmacology 2018; 139: 5260. https://doi.org/10.1016/j.neuropharm.2018.06.022.

    • Search Google Scholar
    • Export Citation
  • 11.

    Sardi NF, Tobaldini G, Morais RN, Fischer L. Nucleus accumbens mediates the pronociceptive effect of sleep deprivation: the role of adenosine A2A and dopamine D2 receptors. Pain 2018; 159(1): 7584. https://doi.org/10.1097/j.pain.0000000000001066.

    • Search Google Scholar
    • Export Citation
  • 12.

    Tomim DH, Pontarolla FM, Bertolini JF, Arase M, Tobaldini G, Lima MM, et al. The pronociceptive effect of paradoxical sleep deprivation in rats: evidence for a role of descending pain modulation mechanisms. Mol Neurobiol 2016; 53(3): 170617. https://doi.org/10.1007/s12035-014-9059-0.

    • Search Google Scholar
    • Export Citation
  • 13.

    Li Q, Zhu ZY, Lu J, Chao YC, Zhou XX, Huang Y, et al. Sleep deprivation of rats increases postsurgical expression and activity of L-type calcium channel in the dorsal root ganglion and slows recovery from postsurgical pain. Acta Neuropathol Commun 2019; 7(1): 217. https://doi.org/10.1186/s40478-019-0868-2.

    • Search Google Scholar
    • Export Citation
  • 14.

    Xue J, Li H, Xu Z, Ma D, Guo R, Yang K, et al. Paradoxical sleep deprivation aggravates and prolongs incision-induced pain hypersensitivity via BDNF signaling-mediated descending facilitation in rats. Neurochem Res 2018; 43(12): 235361. https://doi.org/10.1007/s11064-018-2660-2.

    • Search Google Scholar
    • Export Citation
  • 15.

    Haack M, Simpson N, Sethna N, Kaur S, Mullington J. Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 2020; 45(1): 20516. https://doi.org/10.1038/s41386-019-0439-z.

    • Search Google Scholar
    • Export Citation
  • 16.

    Ahmadi-Soleimani SM, Mianbandi V, Azizi H, Azhdari-Zarmehri H, Ghaemi-Jandabi M, Abbasi-Mazar A, et al. Coregulation of sleep-pain physiological interplay by orexin system: an unprecedented review. Behav Brain Res 2020; 391: 112650. https://doi.org/10.1016/j.bbr.2020.112650.

    • Search Google Scholar
    • Export Citation
  • 17.

    Bjurstrom MF, Irwin MR, Bodelsson M, Smith MT, Mattsson-Carlgren N. Preoperative sleep quality and adverse pain outcomes after total hip arthroplasty. Eur J pain 2021; 25(7): 148292. https://doi.org/10.1002/ejp.1761.

    • Search Google Scholar
    • Export Citation
  • 18.

    Paul-Savoie E, Marchand S, Morin M, Bourgault P, Brissette N, Rattanavong V, et al. Is the deficit in pain inhibition in fibromyalgia influenced by sleep impairments? Open Rheumatol J 2012; 6: 296302. https://doi.org/10.2174/1874312901206010296.

    • Search Google Scholar
    • Export Citation
  • 19.

    Simpson NS, Scott-Sutherland J, Gautam S, Sethna N, Haack M. Chronic exposure to insufficient sleep alters processes of pain habituation and sensitization. Pain 2018; 159(1): 3340. https://doi.org/10.1097/j.pain.0000000000001053.

    • Search Google Scholar
    • Export Citation
  • 20.

    Tiede W, Magerl W, Baumgartner U, Durrer B, Ehlert U, Treede RD. Sleep restriction attenuates amplitudes and attentional modulation of pain-related evoked potentials, but augments pain ratings in healthy volunteers. Pain 2010; 148(1): 3642. https://doi.org/10.1016/j.pain.2009.08.029.

    • Search Google Scholar
    • Export Citation
  • 21.

    Tobaldini G, Aisengart B, Lima MM, Tambeli CH, Fischer L. Ascending nociceptive control contributes to the antinociceptive effect of acupuncture in a rat model of acute pain. The J pain 2014; 15(4): 42234. https://doi.org/10.1016/j.jpain.2013.12.008.

    • Search Google Scholar
    • Export Citation
  • 22.

    Tobaldini G, Andersen EOL, Polato JJ, Guilhen VA, Gaspar JC, Lazzarim MK, et al. Pain and stress: functional evidence that supra-spinal mechanisms involved in pain-induced analgesia mediate stress-induced analgesia. Behav Pharmacol 2020; 31(2&3): 15967. https://doi.org/10.1097/FBP.0000000000000529.

    • Search Google Scholar
    • Export Citation
  • 23.

    Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol 2020; 18(7): e3000410. https://doi.org/10.1371/journal.pbio.3000410.

    • Search Google Scholar
    • Export Citation
  • 24.

    Bonet IJ, Fischer L, Parada CA, Tambeli CH. The role of transient receptor potential A 1 (TRPA1) in the development and maintenance of carrageenan-induced hyperalgesia. Neuropharmacology 2013; 65: 20612. https://doi.org/10.1016/j.neuropharm.2012.09.020.

    • Search Google Scholar
    • Export Citation
  • 25.

    Gear RW, Aley KO, Levine JD. Pain-induced analgesia mediated by mesolimbic reward circuits. J Neurosci 1999; 19(16): 717581. https://doi.org/10.1523/JNEUROSCI.19-16-07175.1999.

    • Search Google Scholar
    • Export Citation
  • 26.

    Tobaldini G, Sardi NF, Guilhen VA, Fischer L. Pain inhibits pain: an ascending-descending pain modulation pathway linking mesolimbic and classical descending mechanisms. Mol Neurobiol 2019; 56(2): 100013. https://doi.org/10.1007/s12035-018-1116-7.

    • Search Google Scholar
    • Export Citation
  • 27.

    Tufik S, Andersen ML, Bittencourt LR, Mello MT. Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research. Anais da Academia Brasileira de Ciencias 2009; 81(3): 52138. https://doi.org/10.1590/s0001-37652009000300016.

    • Search Google Scholar
    • Export Citation
  • 28.

    Morden B, Mitchell G, Dement W. Selective REM sleep deprivation and compensation phenomena in the rat. Brain Res 1967; 5(3): 33949. https://doi.org/10.1016/0006-8993(67)90042-x.

    • Search Google Scholar
    • Export Citation
  • 29.

    Machado RB, Suchecki D, Tufik S. Sleep homeostasis in rats assessed by a long-term intermittent paradoxical sleep deprivation protocol. Behav Brain Res 2005; 160(2): 35664. https://doi.org/10.1016/j.bbr.2005.01.001.

    • Search Google Scholar
    • Export Citation
  • 30.

    Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: recent developments. Neurosci biobehavioral Rev 2009; 33(7): 108998. https://doi.org/10.1016/j.neubiorev.2009.05.004.

    • Search Google Scholar
    • Export Citation
  • 31.

    Gear RW, Levine JD. Rostral ventral medulla cholinergic mechanism in pain-induced analgesia. Neurosci Lett 2009; 464(3): 1702. https://doi.org/10.1016/j.neulet.2009.08.036.

    • Search Google Scholar
    • Export Citation
  • 32.

    Tambeli CH, Levine JD, Gear RW. Centralization of noxious stimulus-induced analgesia (NSIA) is related to activity at inhibitory synapses in the spinal cord. Pain 2009; 143(3): 22832. https://doi.org/10.1016/j.pain.2009.03.005.

    • Search Google Scholar
    • Export Citation
  • 33.

    Schmidt BL, Tambeli CH, Barletta J, Luo L, Green P, Levine JD, et al. Altered nucleus accumbens circuitry mediates pain-induced antinociception in morphine-tolerant rats. J Neurosci 2002; 22(15): 677380. https://doi.org/10.1523/JNEUROSCI.22-15-06773.2002.

    • Search Google Scholar
    • Export Citation
  • 34.

    Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 1957; 111(4): 40919.

    • Search Google Scholar
    • Export Citation
  • 35.

    Dos Santos AC, Castro MA, Jose EA, Delattre AM, Dombrowski PA, Da Cunha C, et al. REM sleep deprivation generates cognitive and neurochemical disruptions in the intranigral rotenone model of Parkinson's disease. J Neurosci Res 2013; 91(11): 150816. https://doi.org/10.1002/jnr.23258.

    • Search Google Scholar
    • Export Citation
  • 36.

    Hu GT, Wang Y. Advances in treatment of post-traumatic stress disorder with Chinese medicine. Chin J Integr Med 2021. https://doi.org/10.1007/s11655-021-2864-1.

    • Search Google Scholar
    • Export Citation
  • 37.

    Wang SJ, Zhang JJ, Qie LL. Acupuncture relieves the excessive excitation of hypothalamic-pituitary-adrenal cortex Axis function and correlates with the regulatory mechanism of GR, CRH, and ACTHR. Evidence-Based complementary and alternative medicine. eCAM 2014; 2014: 495379. https://doi.org/10.1155/2014/495379.

    • Search Google Scholar
    • Export Citation
  • 38.

    Vickers AJ, Vertosick EA, Lewith G, MacPherson H, Foster NE, Sherman KJ, et al. Acupuncture for chronic pain: update of an individual patient data meta-analysis. The J pain 2018; 19(5): 45574. https://doi.org/10.1016/j.jpain.2017.11.005.

    • Search Google Scholar
    • Export Citation
  • 39.

    Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009; 88(3): 184202. https://doi.org/10.1016/j.pneurobio.2009.04.003.

  • 40.

    Filaretov AA, Bogdanov AI, Yarushkina NI. Stress-induced analgesia. The role of hormones produced by the hypophyseal-adrenocortical system. Neurosci Behav Physiol 1996; 26(6): 5728. https://doi.org/10.1007/BF02359502.

    • Search Google Scholar
    • Export Citation
  • 41.

    Gao X, Zhang YQ, Zhang LM, Wu GC. Effects of intraplantar injection of carrageenan on central dopamine release. Brain Res Bull 2001; 54(4): 3914. https://doi.org/10.1016/s0361-9230(00)00460-3.

    • Search Google Scholar
    • Export Citation
  • 42.

    Bai L, Tian J, Zhong C, Xue T, You Y, Liu Z, et al. Acupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study. Mol pain 2010; 6: 73. https://doi.org/10.1186/1744-8069-6-73.

    • Search Google Scholar
    • Export Citation
  • 43.

    Lv Q, Wu F, Gan X, Yang X, Zhou L, Chen J, et al. The involvement of descending pain inhibitory system in electroacupuncture-induced analgesia. Front Integr Neurosci 2019; 13: 38. https://doi.org/10.3389/fnint.2019.00038.

    • Search Google Scholar
    • Export Citation
  • 44.

    Takeshige C, Sato T, Mera T, Hisamitsu T, Fang J. Descending pain inhibitory system involved in acupuncture analgesia. Brain Res Bull 1992; 29(5): 61734. https://doi.org/10.1016/0361-9230(92)90131-g.

    • Search Google Scholar
    • Export Citation
  • 45.

    Ferdousi M, Finn DP. Stress-induced modulation of pain: role of the endogenous opioid system. Prog Brain Res 2018; 239: 12177. https://doi.org/10.1016/bs.pbr.2018.07.002.

    • Search Google Scholar
    • Export Citation
  • 46.

    Lau BK, Vaughan CW. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 2014; 29: 15964. https://doi.org/10.1016/j.conb.2014.07.010.

    • Search Google Scholar
    • Export Citation
  • 47.

    Yilmaz P, Diers M, Diener S, Rance M, Wessa M, Flor H. Brain correlates of stress-induced analgesia. Pain 2010; 151(2): 5229. https://doi.org/10.1016/j.pain.2010.08.016.

    • Search Google Scholar
    • Export Citation
  • 48.

    Gear RW, Levine JD. Nucleus accumbens facilitates nociception. Exp Neurol 2011; 229(2): 5026. https://doi.org/10.1016/j.expneurol.2011.03.021.

    • Search Google Scholar
    • Export Citation
  • 49.

    Han JS. Acupuncture analgesia: areas of consensus and controversy. Pain 2011; 152(3 Suppl): S418. https://doi.org/10.1016/j.pain.2010.10.012.

    • Search Google Scholar
    • Export Citation
  • 50.

    Oh JH, Bai SJ, Cho ZH, Han HC, Min SS, Shim I, et al. Pain-relieving effects of acupuncture and electroacupuncture in an animal model of arthritic pain. The Int J Neurosci 2006; 116(10): 113956. https://doi.org/10.1080/00207450500513948.

    • Search Google Scholar
    • Export Citation
  • 51.

    Taguchi R, Taguchi T, Kitakoji H. Involvement of peripheral opioid receptors in electroacupuncture analgesia for carrageenan-induced hyperalgesia. Brain Res 2010; 1355: 97103. https://doi.org/10.1016/j.brainres.2010.08.014.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 0 0 0
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 24 6 5
Mar 2024 652 26 46
Apr 2024 140 5 7
May 2024 0 0 0