Authors:
Tanja Sobot Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Physiology, Faculty of Medicine University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Tanja Sobot in
Current site
Google Scholar
PubMed
Close
,
Zorislava Bajic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Physiology, Faculty of Medicine University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Zorislava Bajic in
Current site
Google Scholar
PubMed
Close
,
Ranko Skrbic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Ranko Skrbic in
Current site
Google Scholar
PubMed
Close
,
Snezana Uletilovic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Medical Biochemistry and Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Snezana Uletilovic in
Current site
Google Scholar
PubMed
Close
,
Nebojsa Mandic-Kovacevic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Nebojsa Mandic-Kovacevic in
Current site
Google Scholar
PubMed
Close
,
Tanja Cvjetkovic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Medical Biochemistry and Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Tanja Cvjetkovic in
Current site
Google Scholar
PubMed
Close
,
Ugljesa Malicevic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Ugljesa Malicevic in
Current site
Google Scholar
PubMed
Close
,
Djordje Djukanovic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Djordje Djukanovic in
Current site
Google Scholar
PubMed
Close
,
Milica Gajic Bojic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Milica Gajic Bojic in
Current site
Google Scholar
PubMed
Close
,
Sanja Jovicic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Histology and Embryology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Sanja Jovicic in
Current site
Google Scholar
PubMed
Close
,
Maja Barudzija Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Histology and Embryology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Maja Barudzija in
Current site
Google Scholar
PubMed
Close
,
Milos P. Stojiljkovic Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Search for other papers by Milos P. Stojiljkovic in
Current site
Google Scholar
PubMed
Close
, and
Dragan M. Djuric Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Search for other papers by Dragan M. Djuric in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2196-9438
Restricted access

Abstract

Background

Isoprenaline (ISO), a synthetic catecholamine and a β-adrenoceptor agonist, is widely used to develop an experimental model of myocardial injury (MI) in rats. The leading hypothesis for ISO-induced MI in rats is that it results from catecholamine overstimulation, oxidative stress, inflammatory responses, and development of cardiomyopathy during ISO administration. Folic acid (FA) reduces oxidative stress, improves endothelial function and prevents apoptosis, thereby contributing to cardiovascular protection. This study aimed to investigate the potentially protective effect of FA pretreatment on ISO-induced MI in rats.

Methods

For 7 days, adult male Wistar albino rats were pretreated with 5 mg/kg/day of FA. On the sixth and seventh days, MI in rats was induced by administering 85 mg/kg/day of ISO. Prooxidant markers in plasma samples, antioxidant capacity in erythrocyte lysates, cardiac damage markers, lipid profile, electrocardiography (ECG) and histopathological analysis were evaluated.

Results

FA pretreatment significantly alleviated changes induced by ISO; it decreased the homocysteine and high-sensitivity troponin I level. FA moderately decreased the reactive oxygen species (ROS) levels (superoxide anion radical, hydrogen peroxide and thiobarbituric acid reactive substances) and improved the antioxidant activities of catalase, superoxide dismutase and reduced glutathione. ISO reduced the nitrite level and FA significantly alleviated this change.

Conclusion

It can be concluded that FA, as a mild antioxidant, could be an appropriate cardioprotective substance in the rat model of ISO-induced MI.

  • 1.

    Wang SB, Tian S, Yang F, Yang HG, Yang XY, Du GH. Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. Eur J Pharmacol 2009; 615(1–3): 125132. https://doi.org/10.1016/j.ejphar.2009.04.061.

    • Search Google Scholar
    • Export Citation
  • 2.

    Zhou R, Xu Q, Zheng P, Yan L, Zheng J, Dai G. Cardioprotective effect of fluvastatin on isoproterenol-induced myocardial infarction in rat. Eur J Pharmacol 2008; 586(1–3): 244250. https://doi.org/10.1016/j.ejphar.2008.02.057.

    • Search Google Scholar
    • Export Citation
  • 3.

    Fan X, Yang G, Kowitz J, Akin I, Zhou X, El-Battrawy I. Takotsubo syndrome: translational implications and pathomechanisms. Int J Mol Sci 2022; 23(4): 1951. https://doi.org/10.3390/ijms23041951.

    • Search Google Scholar
    • Export Citation
  • 4.

    Manousek J, Kala P, Lokaj P, Ondrus T, Helanova K, Miklikova M, et al. Oxidative stress in takotsubo syndrome-is it essential for an acute attack? Indirect evidences support multisite impact including the calcium overload-energy failure hypothesis. Front Cardiovasc Med 2021; 8: 732708. https://doi.org/10.3389/fcvm.2021.732708.

    • Search Google Scholar
    • Export Citation
  • 5.

    Liao X, Chang E, Tang X, Watanabe I, Zhang R, Jeong W, et al. Cardiac macrophage regulate isoproterenol-induced takotsubo-like cardiomyopathy. JCI Insight 2022; 7(3): e156236. https://doi.org/10.1172/jci.insight.156236.

    • Search Google Scholar
    • Export Citation
  • 6.

    Godsman N, Kohlhaas M, Nickel A, Cheyne L, Mingarelli M, Schweiger L, et al. Metabolic alterations in a rat model of takotsubo syndrome. Cardiovasc Res 2022 Jun 29; 118(8): 19321946. https://doi.org/10.1093/cvr/cvab081.

    • Search Google Scholar
    • Export Citation
  • 7.

    Fischerova I, Trinh MD, Elkalaf M, Vacek L, Heide M, Martinkova S, et al. Isoprenaline modified the lipidomic profile and reduced β-oxidation in HL-1 cardiomyocytes: in vitro model of takotsubo syndrome. Front Cardiovasc Med 2022; 9: 917989. https://doi.org/10.3389/fcvm.2022.917989.

    • Search Google Scholar
    • Export Citation
  • 8.

    Vanni D, Viceconte N, Petrella G, Biccirè FG, Pelliccia F, Tanzilli G, et al. A pilot study on the1 h-nmr serum metabolic profile of takotsubo patients reveals systemic response to oxidative stress. Antioxidants 2021; 10(12): 1982. https://doi.org/10.3390/antiox10121982.

    • Search Google Scholar
    • Export Citation
  • 9.

    Ali A, Redfors B, Lundgren J, Alkhoury J, Oras J, Gan LM, et al. The importance of heart rate in isoprenaline-induced takotsubo-like cardiac dysfunction in rats. ESC Heart Fail 2020 Oct; 7(5): 26902699. https://doi.org/10.1002/ehf2.12858.

    • Search Google Scholar
    • Export Citation
  • 10.

    Shao Y, Redfors B, Scharin Täng M, Möllmann H, Troidl C, Szardien S, et al. Novel rat model reveals important roles of β-adrenoreceptors in stress-induced cardiomyopathy. Int J Cardiol 2013 Oct 3; 168(3): 194350. https://doi.org/10.1016/j.ijcard.2012.12.092.

    • Search Google Scholar
    • Export Citation
  • 11.

    Kaye AD, Jeha GM, Pham AD, Fuller MC, Lerner ZI, Sibley GT, et al. Folic acid supplementation in patients with elevated homocysteine levels. Adv Ther 2020; 37(10): 41494164. https://doi.org/10.1007/s12325-020-01474-z.

    • Search Google Scholar
    • Export Citation
  • 12.

    Sargent F. Folic acid: pteroylglutamic acid and related substances. N Engl J Med 1947; 237: 667672.

  • 13.

    Doshi SN, McDowell IFW, Moat SJ, Payne N, Durrant HJ, Lewis MJ, et al. Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation 2002; 105(1): 2226. https://doi.org/10.1161/hc0102.101388.

    • Search Google Scholar
    • Export Citation
  • 14.

    Bajic Z, Sobot T, Skrbic R, Stojiljkovic MP, Ponorac N, Djuric DM. Homocysteine, vitamins B6 and folic acid in experimental models of myocardial infarction and heart failure-how strong is that link? Biomolecules 2022; 12(4): 536. https://doi.org/10.3390/biom12040536.

    • Search Google Scholar
    • Export Citation
  • 15.

    Liakishev AA. Homocysteine lowering with folic acid and B vitamins in vascular disease. Cardiologia 2006; 46(5): 70. https://doi.org/10.1016/s0749-4041(08)70686-9.

    • Search Google Scholar
    • Export Citation
  • 16.

    Mutavdzin S, Gopcevic K, Stankovic S, Uzelac JJ, Borovic ML, Djuric D. The effects of folic acid administration on cardiac oxidative stress and cardiovascular biomarkers in diabetic rats. Oxid Med Cell Longev 2019; 2019: 1342549.

    • Search Google Scholar
    • Export Citation
  • 17.

    Djurić D, Vušanović A, Jakovljević V. The effects of folic acid and nitric oxide synthase inhibition on coronary flow and oxidative stress markers in isolated rat heart. Mol Cell Biochem 2007; 300(1–2): 177183. https://doi.org/10.1007/s11010-006-9381-6.

    • Search Google Scholar
    • Export Citation
  • 18.

    Tawakol A, Migrino RQ, Aziz KS, Waitkowska J, Holmvang G, Alpert NM, et al. High-dose folic acid acutely improves coronary vasodilator function in patients with coronary artery disease. J Am Coll Cardiol 2005; 45(10): 15801584. https://doi.org/10.1016/j.jacc.2005.02.038.

    • Search Google Scholar
    • Export Citation
  • 19.

    Uzelac JJ, Djukic T, Radic T, Mutavdzin S, Stankovic S, Rakocevic JK, et al. Folic acid affects cardiometabolic, oxidative stress, and immunohistochemical parameters in monocrotaline-induced rat heart failure. Can J Physiol Pharmacol 2020; 98(10): 708716. https://doi.org/10.1139/cjpp-2020-0030.

    • Search Google Scholar
    • Export Citation
  • 20.

    Zhang B, Wang H, Yang Z, Cao M, Wang K, Wang G, et al. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum Exp Toxicol 2020; 39(12): 15961606. https://doi.org/10.1177/0960327120934537.

    • Search Google Scholar
    • Export Citation
  • 21.

    Redfors B, Shao Y, Omerovic E. Influence of anesthetic agent, depth of anesthesia and body temperature on cardiovascular functional parameters in the rat. Lab Anim 2014; 48(1): 614. https://doi.org/10.1177/0023677213502015.

    • Search Google Scholar
    • Export Citation
  • 22.

    Taşkıran E, Erdoğan MA, Yiğittürk G, Erbaş O. Therapeutic effects of liraglutide, oxytocin and granulocyte colony-stimulating factor in doxorubicin-induced cardiomyopathy model: an experimental animal study. Cardiovasc Toxicol 2019; 19(6): 510517. https://doi.org/10.1007/s12012-019-09524-x.

    • Search Google Scholar
    • Export Citation
  • 23.

    Mandić-Kovačević N, Kukrić Z, Latinović S, Cvjetković T, Šobot T, Bajić Z, et al. Antioxidative potential of pomegranate peel extract: in vitro and in vivo studies. Scr Med 2023 Mar; 54(1): 918. https://doi.org/10.5937/scriptamed54-43453.

    • Search Google Scholar
    • Export Citation
  • 24.

    Zhang H, Agardh E, Agardh CD. Nitro blue tetrazolium staining and hydrogen peroxide production in the rat retina in vitamin E deficiency and after light exposure. Graefe’s Arch Clin Exp Ophthalmol 1994; 232(5): 312317. https://doi.org/10.1007/BF00194482.

    • Search Google Scholar
    • Export Citation
  • 25.

    Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 1980; 38(1–2): 161170. https://doi.org/10.1016/0022-1759(80)90340-3.

    • Search Google Scholar
    • Export Citation
  • 26.

    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982; 126(1): 131138. https://doi.org/10.1016/0003-2697(82)90118-X.

    • Search Google Scholar
    • Export Citation
  • 27.

    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351358. https://doi.org/10.1016/0003-2697(79)90738-3.

    • Search Google Scholar
    • Export Citation
  • 28.

    Beutler E, Duron O, Kelly B. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61: 882888.

  • 29.

    Hamed AB, Mantawy EM, El-Bakly WM, Abdel-Mottaleb Y, Azab SS. Putative anti-inflammatory, antioxidant, and anti-apoptotic roles of the natural tissue guardian methyl palmitate against isoproterenol-induced myocardial injury in rats. Futur J Pharm Sci 2020; 6(1). https://doi.org/10.1186/s43094-020-00044-y.

    • Search Google Scholar
    • Export Citation
  • 30.

    Münzel T, Templin C, Cammann VL, Hahad O. Takotsubo syndrome: impact of endothelial dysfunction and oxidative stress. Free Radic Biol Med 2021; 169: 216223. https://doi.org/10.1016/j. freeradbiomed.2021.03.033.

    • Search Google Scholar
    • Export Citation
  • 31.

    Hossini A, Rajabian A, Sobhanifar MA, Alavi MS, Taghipour Z, Hasanpour M, et al. Attenuation of isoprenaline-induced myocardial infarction by Rheum turkestanicum .Biomed Pharmacother 2022; 148: 112775. https://doi.org/10.1016/j.biopha.2022.112775.

    • Search Google Scholar
    • Export Citation
  • 32.

    Panda S, Kar A, Biswas S. Preventive effect of agnucastoside C against isoproterenol-induced myocardial injury. Sci Rep 2017; 7(1): 114. https://doi.org/10.1038/s41598-017-16075-0.

    • Search Google Scholar
    • Export Citation
  • 33.

    Priscilla DH, Prince PS. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem Biol Interact 2009 May 15; 179(2–3): 11824. https://doi.org/10.1016/j.cbi.2008.12.012.

    • Search Google Scholar
    • Export Citation
  • 34.

    Münzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010; 31(22): 27412749. https://doi.org/10.1093/eurheartj/ehq396.

    • Search Google Scholar
    • Export Citation
  • 35.

    Werhaar MC, Stroes E. Folate and cardiovascular disease. Arter Thromb Vasc Biol 2002; 22(6):13. https://doi.org/10.1161/hq0102.102190.

  • 36.

    Wei H, Li H, Wan SP, Zeng QT, Cheng LX, Jiang LL, et al. Cardioprotective effects of malvidin against isoproterenol-induced myocardial infarction in rats: a mechanistic study. Med Sci Monit 2017; 23: 20072016. https://doi.org/10.12659/MSM.902196.

    • Search Google Scholar
    • Export Citation
  • 37.

    Yu Y, Jin L, Zhuang Y, Hu Y, Cang J, Guo K. Cardioprotective effect of rosuvastatin against isoproterenol-induced myocardial infarction injury in rats. Int J Mol Med 2018; 41(6): 35093516. https://doi.org/10.3892/ijmm.2018.3572.

    • Search Google Scholar
    • Export Citation
  • 38.

    Viceconte N, Petrella G, Pelliccia F, Tanzilli G, Cicero DO. Unraveling pathophysiology of takotsubo syndrome: the emerging role of the oxidative stress’s systemic status. J Clin Med 2022; 11(24): 7515. https://doi.org/10.3390/jcm11247515.

    • Search Google Scholar
    • Export Citation
  • 39.

    Nef HM, Möllmann H, Troidl C, Kostin S, Böttger T, Voss S, et al. Expression profiling of cardiac genes in takotsubo cardiomyopathy: insight into a new cardiac entity. J Mol Cell Cardiol 2008; 44(2): 395404. https://doi.org/10.1016/j.yjmcc.2007.10.015.

    • Search Google Scholar
    • Export Citation
  • 40.

    Wang T, Xiong T, Yang Y, Zuo B, Chen X, Wang D. Metabolic remodeling in takotsubo syndrome. Front Cardiovasc 2022; 9: 1060070. https://doi.org/10.3389/fcvm.2022.1060070.

    • Search Google Scholar
    • Export Citation
  • 41.

    Wang FZ, Wei WB, Li X, Huo JY, Jiang WY, Wang HY, et al. The cardioprotective effect of the sodium-glucose cotransporter 2 inhibitor dapagliflozin in rats with isoproterenol-induced cardiomyopathy. Am J Transl Res 2021; 13(9): 1095010961.

    • Search Google Scholar
    • Export Citation
  • 42.

    Djuric D, Jakovljevic V, Zivkovic V, Srejovic. Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous system. Can J Physiol Pharmacol 2018; 96(10): 9911003. https://doi.org/10.1139/cjpp-2018-0112.

    • Search Google Scholar
    • Export Citation
  • 43.

    Chrysant SG, Chrysant GS. The current status of homocysteine as a risk factor for cardiovascular disease: a mini review. Expert Rev Cardiovasc Ther 2018; 16(8): 559565. https://doi.org/10.1080/14779072.2018.1497974.

    • Search Google Scholar
    • Export Citation
  • 44.

    Schnyder G, Roffi M, Pin R, Flammer Y, Lange H, Eberli FR, et al. Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 2001; 345(22): 15931600. https://doi.org/10.1056/nejmoa011364.

    • Search Google Scholar
    • Export Citation
  • 45.

    Qi C, Liu X, Xiong T, Wang D. Tempol prevents isoprenaline-induced takotsubo syndrome via the reactive oxygen species/mitochondrial/anti-apoptosis/p38 MAPK pathway. Eur J Pharmacol 2020; 886: 173439. https://doi.org/10.1016/j.ejphar.2020.173439.

    • Search Google Scholar
    • Export Citation
  • 46.

    Krenek P, Kmecova J, Kucerova D, Bajuszova Z, Musil P, Gazova A, et al. Isoproterenol-induced heart failure in the rat is associated with nitric oxide-dependent functional alterations of cardiac function. Eur J Heart Fail 2009; 11(2): 140146. https://doi.org/10.1093/eurjhf/hfn026.

    • Search Google Scholar
    • Export Citation
  • 47.

    Hagar HH. Folic acid and vitamin B(12) supplementation attenuates isoprenaline-induced myocardial infarction in experimental hyperhomocysteinemic rats. Pharmacol Res 2002 Sep; 46(3): 21319. https://doi.org/10.1016/s1043-6618(02)00095-6.

    • Search Google Scholar
    • Export Citation
  • 48.

    El-Malkey N, Michael M, Ibrahim M, Moawad R, Abdul Rahman M, Ebrahim E. Comparative protective and therapeutic effects of folic acid on cardiac electrical and structural changes in a rat model of diabetic-cardiomyopathy. Egypt J Histology 2022; 45(4): 10491067. https://doi.org/10.21608/ejh.2021.75755.1479.

    • Search Google Scholar
    • Export Citation
  • 49.

    Vinik AI, Casellini C, Parson HK, Colberg SR, Nevoret ML. Cardiac autonomic neuropathy in diabetes: a predictor of cardiometabolic events. Front Neurosci 2018 Aug 27; 12: 591. https://doi.org/10.3389/fnins.2018.00591.

    • Search Google Scholar
    • Export Citation
  • 50.

    Murtaza G, Virk HU, Khalid M, Lavie CJ, Ventura H, Mukherjee D, et al. Diabetic cardiomyopathy-A comprehensive updated review. Prog Cardiovasc Dis 2019 Jul 1; 62(4): 31526. https://doi.org/10.1016/j.pcad.2019.03.003.

    • Search Google Scholar
    • Export Citation
  • 51.

    Jain PG, Mahajan UB, Shinde SD, Surana SJ. Cardioprotective role of FA against isoproterenol induced cardiac toxicity. Mol Biol Rep 2018; 45(5): 13571365. https://doi.org/10.1007/s11033-018-4297-2.

    • Search Google Scholar
    • Export Citation
  • 52.

    Konopelski P, Ufnal M. Electrocardiography in rats: a comparison to human. Physiol Res 2016; 65(5): 717725. https://doi.org/10.33549/physiolres.933270.

    • Search Google Scholar
    • Export Citation
  • 53.

    Chowdhury D, Tangutur AD, Khatua TN, Saxena P, Banerjee SK, Bhadra MP. A proteomic view of isoproterenol induced cardiac hypertrophy: prohibitin identified as a potential biomarker in rats. J Transl Med 2013; 11: 130. https://doi.org/10.1186/1479-5876-11-130.

    • Search Google Scholar
    • Export Citation
  • 54.

    Li N, Zhao Y, Wang F, Song L, Qiao M, Wang T, et al. Folic acid alleviates lead acetate-mediated cardiotoxicity by down-regulating the expression levels of Nrf2, HO-1, GRP78, and CHOP proteins. Environ Sci Pollut Res Int 2022 Aug; 29(37): 5591655927. https://doi.org/10.1007/s11356-022-19821-8.

    • Search Google Scholar
    • Export Citation
  • 55.

    Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse AT. Homocysteine induces oxidative-nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 2011; 11: 6773. https://doi.org/10.1007/s12012-010-9094-7.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 298 8 9
Feb 2024 2838 3 5
Mar 2024 692 27 41
Apr 2024 317 4 7
May 2024 354 3 4
Jun 2024 108 0 0
Jul 2024 0 0 0