Authors:
Burak Tan Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Burak Tan in
Current site
Google Scholar
PubMed
Close
,
Esra Tufan Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Esra Tufan in
Current site
Google Scholar
PubMed
Close
,
Özlem Barutçu Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Özlem Barutçu in
Current site
Google Scholar
PubMed
Close
,
Ezgi Aslan-Gülpınar Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Ezgi Aslan-Gülpınar in
Current site
Google Scholar
PubMed
Close
,
Nurcan Dursun Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Nurcan Dursun in
Current site
Google Scholar
PubMed
Close
, and
Cem Süer Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Cem Süer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6455-6644
Restricted access

Abstract

The aim of this study is to show the relationship between the change in the strengthening of synaptic plasticity and tau phosphorylation and tau-kinases and phosphatase. The averages of the field excitatory-postsynaptic potential (fEPSP) and population spike (PS) in the last 5 min were used as a measure of LTP, LTD and MP. Total and phosphorylated levels of tau, kinases and phosphatases were evaluated by western blot and mRNA levels were evaluated by RT-qPCR. The stimulation of synapses by HFS and LFS+HFS increased the phosphorylation of total-tau and phospho-tau at the Thr181, Ser202/Thr205, Ser396 and Ser416 residues, and these were accompanied by increased enzymatic activity of Akt, ERK1/2. The increased phosphorylation of tau may mediate maintenance of LTP. If the increase in phosphorylation of tau cannot be prevented, together with inhibition of the subsequent LTP, this may indicate that the physiological role of hyperphosphorylated tau in synaptic plasticity may extend to pathological processes.

  • 1.

    Panda D, Goode BL, Feinstein SC, Wilson L. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. Biochemistry 1995; 34(35): 1111727. https://doi.org/10.1021/bi00035a017.

    • Search Google Scholar
    • Export Citation
  • 2.

    Ittner A, Ittner LM. Dendritic tau in Alzheimer's disease. Neuron 2018; 99(1): 1327. https://doi.org/10.1016/j.neuron.2018.06.003.

  • 3.

    Regan P, Piers T, Yi JH, Kim DH, Huh S, Park SJ, et al. Tau phosphorylation at serine 396 residue is required for hippocampal LTD. J Neurosci 2015; 35(12): 480412. https://doi.org/10.1523/JNEUROSCI.2842-14.2015.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, et al. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc Lond B Biol Sci 2014; 369(1633): 20130144. https://doi.org/10.1098/rstb.2013.0144.

    • Search Google Scholar
    • Export Citation
  • 5.

    Babür E, Tan B, Delibaş S, Yousef M, Dursun N, Süer C. Depotentiation of long-term potentiation is associated with epitope-specific Tau hyper-/hypophosphorylation in the hippocampus of adult rats. J Mol Neurosci 2019; 67(2): 193203. https://doi.org/10.1007/s12031-018-1224-x.

    • Search Google Scholar
    • Export Citation
  • 6.

    Billingsley ML, Kincaid RL. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 1997; 323(Pt 3): 57791. https://doi.org/10.1042/bj3230577.

    • Search Google Scholar
    • Export Citation
  • 7.

    Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 2005; 1739(2–3): 198210. https://doi.org/10.1016/j.bbadis.2004.09.008.

    • Search Google Scholar
    • Export Citation
  • 8.

    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986; 83(13): 49137. https://doi.org/10.1073/pnas.83.13.4913.

    • Search Google Scholar
    • Export Citation
  • 9.

    Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 1994; 91(12): 55626. https://doi.org/10.1073/pnas.91.12.5562.

    • Search Google Scholar
    • Export Citation
  • 10.

    Sarubbo F, Ramis MR, Tejada S, Jimenez-Garcia M, Esteban S, Miralles A, et al Resveratrol improves episodic-like memory and motor coordination through modulating neuroinflammation in old rats. J Funct Foods 2023; 104: 105533. https://doi.org/10.1016/j.jff.2023.105533.

    • Search Google Scholar
    • Export Citation
  • 11.

    Santos AR, Mele M, Vaz SH, Kellermayer B, Grimaldi M, Colino-Oliveira M, et al. Differential role of the proteasome in the early and late phases of BDNF-induced facilitation of LTP. J Neurosci 2015; 35(8): 331929. https://doi.org/10.1523/JNEUROSCI.4521-14.2015.

    • Search Google Scholar
    • Export Citation
  • 12.

    Artis AS, Bitiktas S, Taskin E, Dolu N, Liman N, Suer C. Experimental hypothyroidism delays field excitatory post-synaptic potentials and disrupts hippocampal long-term potentiation in the dentate gyrus of hippocampal formation and Y-maze performance in adult rats. J Neuroendocrinol 2012; 24(3): 42233. https://doi.org/10.1111/j.1365-2826.2011.02253.x.

    • Search Google Scholar
    • Export Citation
  • 13.

    Impey S, Obrietan K, Storm DR. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 1999; 23(1): 114. https://doi.org/10.1016/s0896-6273(00)80747-3.

    • Search Google Scholar
    • Export Citation
  • 14.

    Bruchas MR, Schindler AG, Shankar H, Messinger DI, Miyatake M, Land BB, et al. Selective p38alpha MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron 2011; 71(3): 498511. https://doi.org/10.1016/j.neuron.2011.06.011.

    • Search Google Scholar
    • Export Citation
  • 15.

    Bolshakov VY, Carboni L, Cobb MH, Siegelbaum SA, Belardetti F. Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses. Nat Neurosci 2000; 3(11): 110712. https://doi.org/10.1038/80624.

    • Search Google Scholar
    • Export Citation
  • 16.

    Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103(2): 23952. https://doi.org/10.1016/s0092-8674(00)00116-1.

    • Search Google Scholar
    • Export Citation
  • 17.

    Lai KO, Ip NY. Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochim Biophys Acta 2009; 1792(8): 7415. https://doi.org/10.1016/j.bbadis.2009.05.001.

    • Search Google Scholar
    • Export Citation
  • 18.

    Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 1989; 3(4): 51926. https://doi.org/10.1016/0896-6273(89)90210-9.

    • Search Google Scholar
    • Export Citation
  • 19.

    Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry 1992; 31(43): 1062633. https://doi.org/10.1021/bi00158a027.

    • Search Google Scholar
    • Export Citation
  • 20.

    Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 1988; 85(11): 40515. https://doi.org/10.1073/pnas.85.11.4051.

    • Search Google Scholar
    • Export Citation
  • 21.

    Taube JS, Schwartzkroin PA. Mechanisms of long-term potentiation: EPSP/spike dissociation, intradendritic recordings, and glutamate sensitivity. J Neurosci 1988; 8(5): 163244. https://doi.org/10.1523/JNEUROSCI.08-05-01632.1988.

    • Search Google Scholar
    • Export Citation
  • 22.

    Chavez-Noriega L, Bliss T, Halliwell J. The EPSP-spike (ES) component of long-term potentiation in the rat hippocampal slice is modulated by GABAergic but not cholinergic mechanisms. Neurosci Lett 1989; 104(1–2): 5864. https://doi.org/10.1016/0304-3940(89)90329-7.

    • Search Google Scholar
    • Export Citation
  • 23.

    Zucker RS. Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 1999; 9(3): 30513. https://doi.org/10.1016/s0959-4388(99)80045-2.

    • Search Google Scholar
    • Export Citation
  • 24.

    Evans RC, Blackwell KT. Calcium: amplitude, duration, or location? Biol Bull 2015; 228(1): 7583. https://doi.org/10.1086/BBLv228n1p75.

    • Search Google Scholar
    • Export Citation
  • 25.

    Norris CM, Korol DL, Foster TC. Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging. J Neurosci 1996; 16(17): 538292. https://doi.org/10.1523/JNEUROSCI.16-17-05382.1996.

    • Search Google Scholar
    • Export Citation
  • 26.

    Tan B, Aslan-Gulpinar E, Dursun N, Suer C. N-methyl-D-aspartate receptor blockade reduces plasticity-related tau expression and phosphorylation of tau at Ser416 residue but not Thr231 residue. Exp Brain Res 2021; 239(5): 162737. https://doi.org/10.1007/s00221-021-06090-z.

    • Search Google Scholar
    • Export Citation
  • 27.

    Clopath C, Ziegler L, Vasilaki E, Busing L, Gerstner W. Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 2008; 4(12): e1000248. https://doi.org/10.1371/journal.pcbi.1000248.

    • Search Google Scholar
    • Export Citation
  • 28.

    Young JZ, Nguyen PV. Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity. J Neurosci 2005; 25(31): 722131. https://doi.org/10.1523/JNEUROSCI.0909-05.2005.

    • Search Google Scholar
    • Export Citation
  • 29.

    Frey U, Morris RG. Synaptic tagging and long-term potentiation. Nature 1997; 385(6616): 5336. https://doi.org/10.1038/385533a0.

  • 30.

    Tan B, Dursun N, Suer C. Comparison of the subsequent LTP in hippocampal synapses primed by low frequency stimulations ranging from 0.5 to 5 Hz: an in vivo study. Neurosci Lett 2022; 767: 136311. https://doi.org/10.1016/j.neulet.2021.136311.

    • Search Google Scholar
    • Export Citation
  • 31.

    Christie BR, Stellwagen D, Abraham WC. Reduction of the threshold for long-term potentiation by prior theta-frequency synaptic activity. Hippocampus 1995; 5(1): 529. https://doi.org/10.1002/hipo.450050107.

    • Search Google Scholar
    • Export Citation
  • 32.

    Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nagerl UV. A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 2006; 52(2): 23945. https://doi.org/10.1016/j.neuron.2006.08.015.

    • Search Google Scholar
    • Export Citation
  • 33.

    Jarome TJ, Helmstetter FJ. Protein degradation and protein synthesis in long-term memory formation. Front Mol Neurosci 2014; 7: 61. https://doi.org/10.3389/fnmol.2014.00061.

    • Search Google Scholar
    • Export Citation
  • 34.

    Fioravante D, Byrne JH. Protein degradation and memory formation. Brain Res Bull 2011; 85(1–2): 1420. https://doi.org/10.1016/j.brainresbull.2010.11.002.

    • Search Google Scholar
    • Export Citation
  • 35.

    Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M, Weinandy F, Waidelich M, Longo D, et al. Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol Cell Proteomics 2007; 6(2): 28393. https://doi.org/10.1074/mcp.M600046-MCP200.

    • Search Google Scholar
    • Export Citation
  • 36.

    Trinidad JC, Thalhammer A, Specht CG, Lynn AJ, Baker PR, Schoepfer R, et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 2008; 7(4): 68496. https://doi.org/10.1074/mcp.M700170-MCP200.

    • Search Google Scholar
    • Export Citation
  • 37.

    Westenbroek RE, Merrick DK, Catterall WA. Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron 1989; 3(6): 695704. https://doi.org/10.1016/0896-6273(89)90238-9.

    • Search Google Scholar
    • Export Citation
  • 38.

    James TF, Nenov MN, Wildburger NC, Lichti CF, Luisi J, Vergara F, et al. The Nav1.2 channel is regulated by GSK3. Biochim Biophys Acta 2015; 1850(4): 83244. https://doi.org/10.1016/j.bbagen.2015.01.011.

    • Search Google Scholar
    • Export Citation
  • 39.

    Persson AK, Gasser A, Black JA, Waxman SG. Nav1.7 accumulates and co-localizes with phosphorylated ERK1/2 within transected axons in early experimental neuromas. Exp Neurol 2011; 230(2): 2739. https://doi.org/10.1016/j.expneurol.2011.05.005.

    • Search Google Scholar
    • Export Citation
  • 40.

    Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 1993; 12(2): 8038. https://doi.org/10.1002/j.1460-2075.1993.tb05715.x.

    • Search Google Scholar
    • Export Citation
  • 41.

    Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, et al. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 2007; 53(5): 70317. https://doi.org/10.1016/j.neuron.2007.01.029.

    • Search Google Scholar
    • Export Citation
  • 42.

    Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F. Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A. Ageing Res Rev 2013; 12(1): 3949. https://doi.org/10.1016/j.arr.2012.06.008.

    • Search Google Scholar
    • Export Citation
  • 43.

    Mansuy IM, Shenolikar S. Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. Trends Neurosci 2006; 29(12): 67986. https://doi.org/10.1016/j.tins.2006.10.004.

    • Search Google Scholar
    • Export Citation
  • 44.

    Foley K, McKee C, Nairn AC, Xia H. Regulation of synaptic Transmission and plasticity by protein phosphatase 1. J Neurosci 2021; 41(14): 304050. https://doi.org/10.1523/JNEUROSCI.2026-20.2021.

    • Search Google Scholar
    • Export Citation
  • 45.

    Mulkey RM, Herron CE, Malenka RC. An essential role for protein phosphatases in hippocampal long-term depression. Science 1993; 261(5124): 10515. https://doi.org/10.1126/science.8394601.

    • Search Google Scholar
    • Export Citation
  • 46.

    Mauna JC, Miyamae T, Pulli B, Thiels E. Protein phosphatases 1 and 2A are both required for long-term depression and associated dephosphorylation of cAMP response element binding protein in hippocampal area CA1. Hippocampus 2011; 21(10): 1093104. https://doi.org/10.1002/hipo.20823.

    • Search Google Scholar
    • Export Citation
  • 47.

    Mondragon-Rodriguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N, et al. Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. J Biol Chem 2012; 287(38): 3204053. https://doi.org/10.1074/jbc.M112.401240.

    • Search Google Scholar
    • Export Citation
  • 48.

    Medeiros R, Baglietto-Vargas D, LaFerla FM. The role of tau in Alzheimer's disease and related disorders. CNS Neurosci Ther 2011; 17(5): 51424. https://doi.org/10.1111/j.1755-5949.2010.00177.x.

    • Search Google Scholar
    • Export Citation
  • 49.

    Biundo F, Del Prete D, Zhang H, Arancio O, D'Adamio L. A role for tau in learning, memory and synaptic plasticity. Sci Rep 2018; 8(1): 3184. https://doi.org/10.1038/s41598-018-21596-3.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 338 40 60
Apr 2024 168 3 6
May 2024 103 6 8
Jun 2024 47 0 0
Jul 2024 0 0 0