View More View Less
  • 1 School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
  • | 2 Rural Clinical School, College of Health and Medicine, Burnie, Tasmania, 7320, Australia
  • | 3 Department of Emergency Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Cross Mark

Abstract

In sepsis cytokine-mediated inflammation, clotting cascade activation and glycocalyx shedding impair both function and structure of the microcirculation, compromising adequate tissue oxygenation/perfusion. Such mismatch results in “dysoxia”, an imbalance in mitochondrial respiration.

Microvessel injuries can be grouped into four types: cytotoxic oedema, micro-vessel heterogeneity, sluggish/absent flow, and focal anaemia. Recognition of such diversity in microcirculatory pathology, alongside with the implementation of novel biomarkers might reveal previously unobserved heterogeneity in adults diagnosed with sepsis. Early identification of distinct subtypes may help not only to better stratify disease severity but may also provide explanation to the often seen insufficient/absent response to resuscitative treatment. Experimental evidence suggests that impaired microcirculatory flow may correlate with organ dysfunction and mortality. Therefore, reliable/reproducible diagnostic tools, that provide real-time information about the dynamic state of the microcirculation, might be practice changers in managing the critically ill.

The sublingual mucosa and the nailfolds provide easy access to microcirculation via hand-held, point-of-care devices. Accessing these windows, clinicians may recognise, understand and potentially correct the underlying tissue oxygenation/perfusion mismatch. This new clinical information might facilitate an individualised approach vs protocolised care aiming to administer the right balance of intravenous fluids/vasopressors, time/dose auxiliary treatment modalities and, most importantly, might also guide determining the optimal duration of resuscitation to avoid/minimise harm and maximise benefits in sepsis management. However, before every-day clinical use of such point-of-care microcameras, validation studies are needed to establish not only feasibility but reliability and reproducibility as well.

  • 1.

    Xantus G, Kiss B, Molnar G, Matheson C, Anna Gyarmathy V, Kanizsai PL. Lactate reloaded–reevaluation of the importance of lactate monitoring in the management of adult sepsis in the emergency department. Biocell 2021; 45(3): 4459. https://doi.org/10.32604/biocell.2021.014754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Xantus G, Allen P, Norman S, Kanizsai P. Antibiotics administered within 1 hour to adult emergency department patients screened positive for sepsis: a systematic review. Eur J Emerg Med 2020 Aug; 27(4): 2607. https://doi.org/10.1097/MEJ.0000000000000654. PMID: 31855885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Macdonald SPJ, Keijzers G, Taylor DM, Kinnear F, Arendts G, Fatovich DM, et al. Restricted fluid resuscitation in suspected sepsis associated hypotension (REFRESH): a pilot randomised controlled trial. Intensive Care Med 2018 Dec; 44(12): 20708. https://doi.org/10.1007/s00134-018-5433-0. PMID: 30382308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Guven G, Hilty MP, Ince C. Microcirculation: physiology, pathophysiology, and clinical application. Blood Purif 2020; 49(1–2): 14350. https://doi.org/10.1159/000503775. PMID: 31851980; PMCID: PMC7114900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Winkler MS, Kluge S, Holzmann M, Moritz E, Robbe L, Bauer A, et al. Markers of nitric oxide are associated with sepsis severity: an observational study. Crit Care 2017 Jul 15; 21(1): 189. https://doi.org/10.1186/s13054-017-1782-2. PMID: 28709458; PMCID: PMC5513203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol (1985) 2016 Jan 15; 120(2): 22635. https://doi.org/10.1152/japplphysiol.00298.2015. PMID: 26066826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Creery D, Fraser DD. Tissue dysoxia in sepsis: getting to know the mitochondrion. Crit Care Med 2002 Feb; 30(2): 4834. https://doi.org/10.1097/00003246-200202000-00036. PMID: 11889335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ince C, van der Sluijs JP, Sinaasappel M, Avontuur JA, Coremans JM, Bruining HA. Intestinal ischemia during hypoxia and experimental sepsis as observed by NADH videofluorimetry and quenching of Pd-porphine phosphorescence. Adv Exp Med Biol 1994; 361:10510. https://doi.org/10.1007/978-1-4615-1875-4_14. PMID: 7597932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 2014 Jan 1; 5(1): 739. https://doi.org/10.4161/viru.26482. PMID: 24067428; PMCID: PMC3916386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Edul VS, Ince C, Vazquez AR, Rubatto PN, Espinoza ED, Welsh S, et al. Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Ann Am Thorac Soc 2016 Feb; 13(2): 2407. https://doi.org/10.1513/AnnalsATS.201509-606OC. PMID: 26624559.

    • Search Google Scholar
    • Export Citation
  • 11.

    Dilken O, Ergin B, Ince C. Assessment of sublingual microcirculation in critically ill patients: consensus and debate. Ann Transl Med 2020 Jun; 8(12): 793. https://doi.org/10.21037/atm.2020.03.222. PMID: 32647718; PMCID: PMC7333125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Charlton M, Sims M, Coats T, Thompson JP. The microcirculation and its measurement in sepsis. J Intensive Care Soc 2017 Aug; 18(3): 2217. https://doi.org/10.1177/1751143716678638. PMID: 29118834; PMCID: PMC5665123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Rovas A, Seidel LM, Vink H, Pohlkötter T, Pavenstädt H, Ertmer C, et al. Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. Crit Care 2019 Jul 24; 23(1): 260. https://doi.org/10.1186/s13054-019-2542-2. PMID: 31340868; PMCID: PMC6657098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hessler M, Nelis P, Ertmer C, Alnawaiseh M, Lehmann F, Schmidt C, et al. Author Correction: Optical coherence tomography angiography as a novel approach to contactless evaluation of sublingual microcirculation: a proof of principle study. Sci Rep 2020 Jul 7; 10(1): 11458. https://doi.org/10.1038/s41598-020-68556-4. Erratum for: Sci Rep. 2020 Mar 25;10(1):5408. PMID: 32632131; PMCID: PMC7338536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Barcelos A, Lamas C, Tibiriça E. Evaluation of microvascular endothelial function in patients with infective endocarditis using laser speckle contrast imaging and skin video-capillaroscopy: research proposal of a case control prospective study. BMC Res Notes 2017 Jul 28; 10(1): 342. https://doi.org/10.1186/s13104-017-2660-3. PMID: 28754178; PMCID: PMC5534027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hernandez G, Bruhn A, Luengo C, Regueira T, Kattan E, Fuentealba A, et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med 2013 Aug; 39(8): 143543. https://doi.org/10.1007/s00134-013-2982-0. PMID: 23740284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hernandez G, Luengo C, Bruhn A, Kattan E, Friedman G, Ospina-Tascon GA, et al. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care 2014 Oct 11; 4:30. https://doi.org/10.1186/s13613-014-0030-z. PMID: 25593746; PMCID: PMC4273696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kanoore Edul VS, Dubin A, Ince C. The microcirculation as a therapeutic target in the treatment of sepsis and shock. Semin Respir Crit Care Med 2011 Oct; 32(5): 55868. https://doi.org/10.1055/s-0031-1287864. PMID: 21989692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Andermann A, Blancquaert I, Beauchamp S, Déry V. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ 2008 Apr; 86(4): 3179. https://doi.org/10.2471/blt.07.050112. PMID: 18438522; PMCID: PMC2647421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Tanaka S, Harrois A, Nicolaï C, Flores M, Hamada S, Vicaut E, et al. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care 2015 Nov 6; 19:388. https://doi.org/10.1186/s13054-015-1106-3. PMID: 26542952; PMCID: PMC4635966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hutchings SD, Naumann DN, Hopkins P, Mellis C, Riozzi P, Sartini S, et al. Microcirculatory impairment is associated with multiple organ dysfunction following traumatic hemorrhagic shock: the MICROSHOCK study. Crit Care Med 2018 Sep; 46(9): e88996. https://doi.org/10.1097/CCM.0000000000003275. PMID: 29957708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Rochwerg B, Alhazzani W, Sindi A, Heels-Ansdell D, Thabane L, Fox-Robichaud A, et al. Fluids in Sepsis and Septic Shock Group. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med 2014 Sep 2; 161(5): 34755. https://doi.org/10.7326/M14-0178. PMID: 25047428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhang Z. The efficacy of activated protein C for the treatment of sepsis: incorporating observational evidence with a Bayesian approach. BMJ Open 2015 Jan 16; 5(1): e006524. https://doi.org/10.1136/bmjopen-2014-006524. PMID: 25596198; PMCID: PMC4298096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Zhang Z, Chen K. Vasoactive agents for the treatment of sepsis. Ann Transl Med 2016 Sep; 4(17): 333. https://doi.org/10.21037/atm.2016.08.58. PMID: 27713891; PMCID: PMC5050188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Carr AC. Vitamin C administration in the critically ill: a summary of recent meta-analyses. Crit Care 2019 Jul 30; 23(1): 265. https://doi.org/10.1186/s13054-019-2538-y. PMID: 31362775; PMCID: PMC6664573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Szakmany T, Hauser B, Radermacher P. N-acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev 2012 Sep 12; 2012(9): CD006616. https://doi.org/10.1002/14651858.CD006616.pub2. PMID: 22972094; PMCID: PMC6517277.

    • Search Google Scholar
    • Export Citation
  • 27.

    Rochwerg B, Oczkowski SJ, Siemieniuk RAC, Agoritsas T, Belley-Cote E, D'Aragon F, et al. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med 2018 Sep; 46(9): 141120. https://doi.org/10.1097/CCM.0000000000003262. PMID: 29979221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Xantus G, Penny A, Norman SE, Kanizsai PL. A korai krisztalloidbolus előnyei felnőtt szeptikus betegek sürgősségi kezelésében [The role of early intravenous crystalloid bolus in adult sepsis resuscitation in the emergency department]. Orv Hetil 2020 Sep 27; 161(39): 166874. Hungarian. https://doi.org/10.1556/650.2020.31864. PMID: 32980822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015 Jan 28; 19(1): 26. https://doi.org/10.1186/s13054-015-0741-z. PMID: 25887223; PMCID: PMC4308932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019 Jan 17; 23(1): 16. https://doi.org/10.1186/s13054-018-2292-6. PMID: 30654825; PMCID: PMC6337861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lee DH, Dane MJ, van den Berg BM, Boels MG, van Teeffelen JW, de Mutsert R, et al. NEO study group. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One 2014 May 9; 9(5): e96477. https://doi.org/10.1371/journal.pone.0096477. PMID: 24816787; PMCID: PMC4015985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Chen YY, Wu VC, Huang WC, Yeh YC, Wu MS, Huang CC, et al. Norepinephrine administration is associated with higher mortality in dialysis requiring acute kidney injury patients with septic shock. J Clin Med 2018 Sep 12; 7(9): 274. https://doi.org/10.3390/jcm7090274. PMID: 30213107; PMCID: PMC6162856.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 155 155 155
Full Text Views 4 4 4
PDF Downloads 3 3 3