Clear cell renal cell carcinoma (ccRCC) is a dominant subtype of kidney cancer with a dismal outcome at advanced stages. Ataxin 3 (ATXN3) has been proven to play a cancer-promoting role in several tumors and is upregulated in the patients with renal cell carcinoma. Thus, the objective of this research is to examine the biological roles and underlying mechanisms of ATXN3 in ccRCC.
Bioinformatics analysis was carried out to analyze ATXN3 expression in ccRCC tissues and patient survival. Gain- and loss-of-function assays were applied to explore the effect of ATXN3 on ccRCC cell malignant behavior in vitro. The effect of ATXN3 on the NF-κB pathway was assessed by Western blot and immunofluorescence staining. The binding between ATXN3 and S100A8 and the effect of ATXN3 on S100A8 ubiquitination were verified using coimmunoprecipitation.
ATXN3 was upregulated in ccRCC tissues and correlated with adverse patient outcome. ATXN3 overexpression facilitated the proliferation, stemness, invasion and migratory capacity of ccRCC cells, whereas silencing had the opposite effect. ATXN3 enhanced the activity of the NF-κB pathway. Silencing ATXN3 facilitated S100A8 ubiquitination. Rescue experiments demonstrated that S100A8 downregulation reversed the promoting effect of ATXN3 on malignant behavior and NF-κB pathway activation in ccRCC cells.
ATXN3 exerts a cancer-promoting effect in ccRCC by regulating S100A8 ubiquitination. Therefore, targeting the ATXN3/S100A8/NF-κB axis may provide a novel underlying therapeutic strategy for ccRCC.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–49. https://doi.org/10.3322/caac.21660.
Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet 2009; 373(9669): 1119–32. https://doi.org/10.1016/S0140-6736(09)60229-4.
Grange C, Brossa A, Bussolati B. Extracellular vesicles and carried miRNAs in the progression of renal cell carcinoma. Int J Mol Sci 2019; 20(8): 1832. https://doi.org/10.3390/ijms20081832.
Scaglione KM, Zavodszky E, Todi SV, Patury S, Xu P, Rodriguez-Lebron E, et al. Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP. Mol Cell 2011; 43(4): 599–612. https://doi.org/10.1016/j.molcel.2011.05.036.
Zhu R, Gires O, Zhu L, Liu J, Li J, Yang H, et al. TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun 2019; 10(1): 2863. https://doi.org/10.1038/s41467-019-10739-3.
Zhuang S, Xie J, Zhen J, Guo L, Hong Z, Li F, et al. The deubiquitinating enzyme ATXN3 promotes the progression of anaplastic thyroid carcinoma by stabilizing EIF5A2. Mol Cell Endocrinol 2021; 537: 111440. https://doi.org/10.1016/j.mce.2021.111440.
Sacco JJ, Yau TY, Darling S, Patel V, Liu H, Urbe S, et al. The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer cells. Oncogene 2014; 33(33): 4265–72. https://doi.org/10.1038/onc.2013.512.
Ergun S, Gunes S, Buyukalpelli R, Aydin O. Association of Abl interactor 2, ABI2, with platelet/lymphocyte ratio in patients with renal cell carcinoma: a pilot study. Int J Exp Pathol 2020; 101(3–4): 87–95. https://doi.org/10.1111/iep.12349.
Lackmann M, Cornish CJ, Simpson RJ, Moritz RL, Geczy CL. Purification and structural analysis of a murine chemotactic cytokine (CP-10) with sequence homology to S100 proteins. J Biol Chem. 1992; 267(11): 7499–504.
Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006; 72(11): 1622–31. https://doi.org/10.1016/j.bcp.2006.05.017.
Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 2003; 170(6): 3233–42. https://doi.org/10.4049/jimmunol.170.6.3233.
Tanigawa K, Tsukamoto S, Koma YI, Kitamura Y, Urakami S, Shimizu M, et al. S100A8/A9 induced by interaction with macrophages in esophageal squamous cell carcinoma promotes the migration and invasion of cancer cells via Akt and p38 MAPK pathways. Am J Pathol 2022; 192(3): 536–52. https://doi.org/10.1016/j.ajpath.2021.12.002.
Kwon CH, Moon HJ, Park HJ, Choi JH, Park DY. S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-kappaB activation in gastric cancer cells. Mol Cells 2013; 35(3): 226–34. https://doi.org/10.1007/s10059-013-2269-x.
Kaushal GP, Chandrashekar K, Juncos LA. Molecular interactions between reactive oxygen species and autophagy in kidney disease. Int J Mol Sci 2019; 20(15): 3791. https://doi.org/10.3390/ijms20153791.
Wang SH, Xia YJ, Yu J, He CY, Han JR, Bai JX. S100 calcium-binding protein A8 functions as a tumor-promoting factor in renal cell carcinoma via activating NF-κB signaling pathway. J Invest Surg 2023; 36(1): 2241081. https://doi.org/10.1080/08941939.2023.2241081.
De Meerleer G, Khoo V, Escudier B, Joniau S, Bossi A, Ost P, et al. Radiotherapy for renal-cell carcinoma. Lancet Oncol 2014; 15(4): e170–7. https://doi.org/10.1016/S1470-2045(13)70569-2.
Wu L, Ou Z, Liu P, Zhao C, Tong S, Wang R, et al. ATXN3 promotes prostate cancer progression by stabilizing YAP. Cell Commun Signal 2023; 21(1): 152. https://doi.org/10.1186/s12964-023-01073-9.
Wu X, Zhang X, Liu P, Wang Y. Involvement of Ataxin-3 (ATXN3) in the malignant progression of pancreatic cancer via deubiquitinating HDAC6. Pancreatology 2023; 23(6): 630–41. https://doi.org/10.1016/j.pan.2023.06.011.
Zou H, Chen H, Zhou Z, Wan Y, Liu Z. ATXN3 promotes breast cancer metastasis by deubiquitinating KLF4. Cancer Lett 2019; 467: 19–28. https://doi.org/10.1016/j.canlet.2019.09.012.
Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005; 23(21): 4776–89. https://doi.org/10.1200/jco.2005.05.081.
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20(11): 1242–53. https://doi.org/10.1038/nm.3739.
Liu H, Li X, Ning G, Zhu S, Ma X, Liu X, et al. The machado-Joseph disease Deubiquitinase ataxin-3 regulates the stability and apoptotic function of p53. Plos Biol 2016; 14(11): e2000733. https://doi.org/10.1371/journal.pbio.2000733.
Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res 2017; 45(8): 4532–49. https://doi.org/10.1093/nar/gkx095.
Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol 2003; 23(18): 6469–83. https://doi.org/10.1128/mcb.23.18.6469-6483.2003.
Jiang N, Xie F, Guo Q, Li MQ, Xiao J, Sui L. Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-kappaB pathway. Tumour Biol 2017; 39(6): 1010428317710586. https://doi.org/10.1177/1010428317710586.
Pan S, Hu Y, Hu M, Xu Y, Chen M, Du C, et al. S100A8 facilitates cholangiocarcinoma metastasis via upregulation of VEGF through TLR4/NF-kappaB pathway activation. Int J Oncol 2020; 56(1): 101–12. https://doi.org/10.3892/ijo.2019.4907.
Wang Y, Su J, Wang Y, Fu D, Ideozu JE, Geng H, et al. The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-κB signaling axis. J Exp Clin Cancer Res 2019; 38(1): 386. https://doi.org/10.1186/s13046-019-1347-0.
Morgan D, Garg M, Tergaonkar V, Tan SY, Sethi G. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1874(2): 188449. https://doi.org/10.1016/j.bbcan.2020.188449.
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5(1): 209. https://doi.org/10.1038/s41392-020-00312-6.
Gui D, Dong Z, Peng W, Jiang W, Huang G, Liu G, et al. Ubiquitin-specific peptidase 53 inhibits the occurrence and development of clear cell renal cell carcinoma through NF-κB pathway inactivation. Cancer Med 2021; 10(11): 3674–88. https://doi.org/10.1002/cam4.3911.
Sowa AS, Haas E, Hubener-Schmid J, Lorentz A. Ataxin-3, the spinocerebellar ataxia type 3 neurodegenerative disorder protein, affects mast cell functions. Front Immunol 2022; 13: 870966. https://doi.org/10.3389/fimmu.2022.870966.
Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, et al. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 2008; 83(6): 1484–92. https://doi.org/10.1189/jlb.0607397.
Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res 2018; 67(10): 801–12. https://doi.org/10.1007/s00011-018-1173-4.
Herik Rodrigo AG, Tomonobu N, Yoneda H, Kinoshita R, Mitsui Y, Sadahira T, et al. Toll-like receptor 4 promotes bladder cancer progression upon S100A8/A9 binding, which requires TIRAP-mediated TPL2 activation. Biochem Biophys Res Commun 2022; 634: 83–91. https://doi.org/10.1016/j.bbrc.2022.09.116.
Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 2006; 312(2): 184–97. https://doi.org/10.1016/j.yexcr.2005.10.013.
Miller P, Kidwell KM, Thomas D, Sabel M, Rae JM, Hayes DF, et al. Elevated S100A8 protein expression in breast cancer cells and breast tumor stroma is prognostic of poor disease outcome. Breast Cancer Res Treat 2017; 166(1): 85–94. https://doi.org/10.1007/s10549-017-4366-6.
Fujita Y, Khateb A, Li Y, Tinoco R, Zhang T, Bar-Yoseph H, et al. Regulation of S100A8 stability by RNF5 in intestinal epithelial cells determines intestinal inflammation and severity of colitis. Cell Rep 2018; 24(12): 3296–311.e6. https://doi.org/10.1016/j.celrep.2018.08.057.
Chen W, Wang H, Lu Y, Huang Y, Xuan Y, Li X, et al. GTSE1 promotes tumor growth and metastasis by attenuating of KLF4 expression in clear cell renal cell carcinoma. Lab Invest 2022; 102(9): 1011–22. https://doi.org/10.1038/s41374-022-00797-5.
Liu SC, Chen LB, Chen PF, Huang ML, Liu TP, Peng J, et al. PDCD5 inhibits progression of renal cell carcinoma by promoting T cell immunity: with the involvement of the HDAC3/microRNA-195-5p/SGK1. Clin Epigenetics 2022; 14(1): 131. https://doi.org/10.1186/s13148-022-01336-1.
Shi J, Miao D, Lv Q, Wang K, Wang Q, Liang H, et al. The m6A modification-mediated OGDHL exerts a tumor suppressor role in ccRCC by downregulating FASN to inhibit lipid synthesis and ERK signaling. Cell Death Dis 2023; 14(8): 560. https://doi.org/10.1038/s41419-023-06090-7.
Wang W, Zhou PH, Hu W. Overexpression of FOXO4 induces apoptosis of clear-cell renal carcinoma cells through downregulation of Bim. Mol Med Rep 2016; 13(3): 2229–34. https://doi.org/10.3892/mmr.2016.4789.