Authors:
Jixiang Bai Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China

Search for other papers by Jixiang Bai in
Current site
Google Scholar
PubMed
Close
,
Jieru Han Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China

Search for other papers by Jieru Han in
Current site
Google Scholar
PubMed
Close
,
Jiayi Fan Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China

Search for other papers by Jiayi Fan in
Current site
Google Scholar
PubMed
Close
,
Jing Song Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China

Search for other papers by Jing Song in
Current site
Google Scholar
PubMed
Close
, and
Shuhui Wang Department of Integrated Traditional Chinese and Western Medicine and Geriatrics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China

Search for other papers by Shuhui Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0005-8691-8393
Restricted access

Abstract

Background

Clear cell renal cell carcinoma (ccRCC) is a dominant subtype of kidney cancer with a dismal outcome at advanced stages. Ataxin 3 (ATXN3) has been proven to play a cancer-promoting role in several tumors and is upregulated in the patients with renal cell carcinoma. Thus, the objective of this research is to examine the biological roles and underlying mechanisms of ATXN3 in ccRCC.

Methods

Bioinformatics analysis was carried out to analyze ATXN3 expression in ccRCC tissues and patient survival. Gain- and loss-of-function assays were applied to explore the effect of ATXN3 on ccRCC cell malignant behavior in vitro. The effect of ATXN3 on the NF-κB pathway was assessed by Western blot and immunofluorescence staining. The binding between ATXN3 and S100A8 and the effect of ATXN3 on S100A8 ubiquitination were verified using coimmunoprecipitation.

Results

ATXN3 was upregulated in ccRCC tissues and correlated with adverse patient outcome. ATXN3 overexpression facilitated the proliferation, stemness, invasion and migratory capacity of ccRCC cells, whereas silencing had the opposite effect. ATXN3 enhanced the activity of the NF-κB pathway. Silencing ATXN3 facilitated S100A8 ubiquitination. Rescue experiments demonstrated that S100A8 downregulation reversed the promoting effect of ATXN3 on malignant behavior and NF-κB pathway activation in ccRCC cells.

Conclusion

ATXN3 exerts a cancer-promoting effect in ccRCC by regulating S100A8 ubiquitination. Therefore, targeting the ATXN3/S100A8/NF-κB axis may provide a novel underlying therapeutic strategy for ccRCC.

Supplementary Materials

    • Supplemental Material
  • 1.

    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 20949. https://doi.org/10.3322/caac.21660.

    • Search Google Scholar
    • Export Citation
  • 2.

    Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet 2009; 373(9669): 111932. https://doi.org/10.1016/S0140-6736(09)60229-4.

    • Search Google Scholar
    • Export Citation
  • 3.

    Grange C, Brossa A, Bussolati B. Extracellular vesicles and carried miRNAs in the progression of renal cell carcinoma. Int J Mol Sci 2019; 20(8): 1832. https://doi.org/10.3390/ijms20081832.

    • Search Google Scholar
    • Export Citation
  • 4.

    Scaglione KM, Zavodszky E, Todi SV, Patury S, Xu P, Rodriguez-Lebron E, et al. Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP. Mol Cell 2011; 43(4): 599612. https://doi.org/10.1016/j.molcel.2011.05.036.

    • Search Google Scholar
    • Export Citation
  • 5.

    Zhu R, Gires O, Zhu L, Liu J, Li J, Yang H, et al. TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun 2019; 10(1): 2863. https://doi.org/10.1038/s41467-019-10739-3.

    • Search Google Scholar
    • Export Citation
  • 6.

    Zhuang S, Xie J, Zhen J, Guo L, Hong Z, Li F, et al. The deubiquitinating enzyme ATXN3 promotes the progression of anaplastic thyroid carcinoma by stabilizing EIF5A2. Mol Cell Endocrinol 2021; 537: 111440. https://doi.org/10.1016/j.mce.2021.111440.

    • Search Google Scholar
    • Export Citation
  • 7.

    Sacco JJ, Yau TY, Darling S, Patel V, Liu H, Urbe S, et al. The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer cells. Oncogene 2014; 33(33): 426572. https://doi.org/10.1038/onc.2013.512.

    • Search Google Scholar
    • Export Citation
  • 8.

    Ergun S, Gunes S, Buyukalpelli R, Aydin O. Association of Abl interactor 2, ABI2, with platelet/lymphocyte ratio in patients with renal cell carcinoma: a pilot study. Int J Exp Pathol 2020; 101(3–4): 8795. https://doi.org/10.1111/iep.12349.

    • Search Google Scholar
    • Export Citation
  • 9.

    Lackmann M, Cornish CJ, Simpson RJ, Moritz RL, Geczy CL. Purification and structural analysis of a murine chemotactic cytokine (CP-10) with sequence homology to S100 proteins. J Biol Chem. 1992; 267(11): 7499504.

    • Search Google Scholar
    • Export Citation
  • 10.

    Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006; 72(11): 162231. https://doi.org/10.1016/j.bcp.2006.05.017.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 2003; 170(6): 323342. https://doi.org/10.4049/jimmunol.170.6.3233.

    • Search Google Scholar
    • Export Citation
  • 12.

    Tanigawa K, Tsukamoto S, Koma YI, Kitamura Y, Urakami S, Shimizu M, et al. S100A8/A9 induced by interaction with macrophages in esophageal squamous cell carcinoma promotes the migration and invasion of cancer cells via Akt and p38 MAPK pathways. Am J Pathol 2022; 192(3): 53652. https://doi.org/10.1016/j.ajpath.2021.12.002.

    • Search Google Scholar
    • Export Citation
  • 13.

    Kwon CH, Moon HJ, Park HJ, Choi JH, Park DY. S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-kappaB activation in gastric cancer cells. Mol Cells 2013; 35(3): 22634. https://doi.org/10.1007/s10059-013-2269-x.

    • Search Google Scholar
    • Export Citation
  • 14.

    Kaushal GP, Chandrashekar K, Juncos LA. Molecular interactions between reactive oxygen species and autophagy in kidney disease. Int J Mol Sci 2019; 20(15): 3791. https://doi.org/10.3390/ijms20153791.

    • Search Google Scholar
    • Export Citation
  • 15.

    Wang SH, Xia YJ, Yu J, He CY, Han JR, Bai JX. S100 calcium-binding protein A8 functions as a tumor-promoting factor in renal cell carcinoma via activating NF-κB signaling pathway. J Invest Surg 2023; 36(1): 2241081. https://doi.org/10.1080/08941939.2023.2241081.

    • Search Google Scholar
    • Export Citation
  • 16.

    De Meerleer G, Khoo V, Escudier B, Joniau S, Bossi A, Ost P, et al. Radiotherapy for renal-cell carcinoma. Lancet Oncol 2014; 15(4): e1707. https://doi.org/10.1016/S1470-2045(13)70569-2.

    • Search Google Scholar
    • Export Citation
  • 17.

    Wu L, Ou Z, Liu P, Zhao C, Tong S, Wang R, et al. ATXN3 promotes prostate cancer progression by stabilizing YAP. Cell Commun Signal 2023; 21(1): 152. https://doi.org/10.1186/s12964-023-01073-9.

    • Search Google Scholar
    • Export Citation
  • 18.

    Wu X, Zhang X, Liu P, Wang Y. Involvement of Ataxin-3 (ATXN3) in the malignant progression of pancreatic cancer via deubiquitinating HDAC6. Pancreatology 2023; 23(6): 63041. https://doi.org/10.1016/j.pan.2023.06.011.

    • Search Google Scholar
    • Export Citation
  • 19.

    Zou H, Chen H, Zhou Z, Wan Y, Liu Z. ATXN3 promotes breast cancer metastasis by deubiquitinating KLF4. Cancer Lett 2019; 467: 1928. https://doi.org/10.1016/j.canlet.2019.09.012.

    • Search Google Scholar
    • Export Citation
  • 20.

    Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005; 23(21): 477689. https://doi.org/10.1200/jco.2005.05.081.

    • Search Google Scholar
    • Export Citation
  • 21.

    Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20(11): 124253. https://doi.org/10.1038/nm.3739.

    • Search Google Scholar
    • Export Citation
  • 22.

    Liu H, Li X, Ning G, Zhu S, Ma X, Liu X, et al. The machado-Joseph disease Deubiquitinase ataxin-3 regulates the stability and apoptotic function of p53. Plos Biol 2016; 14(11): e2000733. https://doi.org/10.1371/journal.pbio.2000733.

    • Search Google Scholar
    • Export Citation
  • 23.

    Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res 2017; 45(8): 453249. https://doi.org/10.1093/nar/gkx095.

    • Search Google Scholar
    • Export Citation
  • 24.

    Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol 2003; 23(18): 646983. https://doi.org/10.1128/mcb.23.18.6469-6483.2003.

    • Search Google Scholar
    • Export Citation
  • 25.

    Jiang N, Xie F, Guo Q, Li MQ, Xiao J, Sui L. Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-kappaB pathway. Tumour Biol 2017; 39(6): 1010428317710586. https://doi.org/10.1177/1010428317710586.

    • Search Google Scholar
    • Export Citation
  • 26.

    Pan S, Hu Y, Hu M, Xu Y, Chen M, Du C, et al. S100A8 facilitates cholangiocarcinoma metastasis via upregulation of VEGF through TLR4/NF-kappaB pathway activation. Int J Oncol 2020; 56(1): 10112. https://doi.org/10.3892/ijo.2019.4907.

    • Search Google Scholar
    • Export Citation
  • 27.

    Wang Y, Su J, Wang Y, Fu D, Ideozu JE, Geng H, et al. The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-κB signaling axis. J Exp Clin Cancer Res 2019; 38(1): 386. https://doi.org/10.1186/s13046-019-1347-0.

    • Search Google Scholar
    • Export Citation
  • 28.

    Morgan D, Garg M, Tergaonkar V, Tan SY, Sethi G. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1874(2): 188449. https://doi.org/10.1016/j.bbcan.2020.188449.

    • Search Google Scholar
    • Export Citation
  • 29.

    Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5(1): 209. https://doi.org/10.1038/s41392-020-00312-6.

    • Search Google Scholar
    • Export Citation
  • 30.

    Gui D, Dong Z, Peng W, Jiang W, Huang G, Liu G, et al. Ubiquitin-specific peptidase 53 inhibits the occurrence and development of clear cell renal cell carcinoma through NF-κB pathway inactivation. Cancer Med 2021; 10(11): 367488. https://doi.org/10.1002/cam4.3911.

    • Search Google Scholar
    • Export Citation
  • 31.

    Sowa AS, Haas E, Hubener-Schmid J, Lorentz A. Ataxin-3, the spinocerebellar ataxia type 3 neurodegenerative disorder protein, affects mast cell functions. Front Immunol 2022; 13: 870966. https://doi.org/10.3389/fimmu.2022.870966.

    • Search Google Scholar
    • Export Citation
  • 32.

    Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, et al. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 2008; 83(6): 148492. https://doi.org/10.1189/jlb.0607397.

    • Search Google Scholar
    • Export Citation
  • 33.

    Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res 2018; 67(10): 80112. https://doi.org/10.1007/s00011-018-1173-4.

    • Search Google Scholar
    • Export Citation
  • 34.

    Herik Rodrigo AG, Tomonobu N, Yoneda H, Kinoshita R, Mitsui Y, Sadahira T, et al. Toll-like receptor 4 promotes bladder cancer progression upon S100A8/A9 binding, which requires TIRAP-mediated TPL2 activation. Biochem Biophys Res Commun 2022; 634: 8391. https://doi.org/10.1016/j.bbrc.2022.09.116.

    • Search Google Scholar
    • Export Citation
  • 35.

    Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 2006; 312(2): 18497. https://doi.org/10.1016/j.yexcr.2005.10.013.

    • Search Google Scholar
    • Export Citation
  • 36.

    Miller P, Kidwell KM, Thomas D, Sabel M, Rae JM, Hayes DF, et al. Elevated S100A8 protein expression in breast cancer cells and breast tumor stroma is prognostic of poor disease outcome. Breast Cancer Res Treat 2017; 166(1): 8594. https://doi.org/10.1007/s10549-017-4366-6.

    • Search Google Scholar
    • Export Citation
  • 37.

    Fujita Y, Khateb A, Li Y, Tinoco R, Zhang T, Bar-Yoseph H, et al. Regulation of S100A8 stability by RNF5 in intestinal epithelial cells determines intestinal inflammation and severity of colitis. Cell Rep 2018; 24(12): 3296311.e6. https://doi.org/10.1016/j.celrep.2018.08.057.

    • Search Google Scholar
    • Export Citation
  • 38.

    Chen W, Wang H, Lu Y, Huang Y, Xuan Y, Li X, et al. GTSE1 promotes tumor growth and metastasis by attenuating of KLF4 expression in clear cell renal cell carcinoma. Lab Invest 2022; 102(9): 101122. https://doi.org/10.1038/s41374-022-00797-5.

    • Search Google Scholar
    • Export Citation
  • 39.

    Liu SC, Chen LB, Chen PF, Huang ML, Liu TP, Peng J, et al. PDCD5 inhibits progression of renal cell carcinoma by promoting T cell immunity: with the involvement of the HDAC3/microRNA-195-5p/SGK1. Clin Epigenetics 2022; 14(1): 131. https://doi.org/10.1186/s13148-022-01336-1.

    • Search Google Scholar
    • Export Citation
  • 40.

    Shi J, Miao D, Lv Q, Wang K, Wang Q, Liang H, et al. The m6A modification-mediated OGDHL exerts a tumor suppressor role in ccRCC by downregulating FASN to inhibit lipid synthesis and ERK signaling. Cell Death Dis 2023; 14(8): 560. https://doi.org/10.1038/s41419-023-06090-7.

    • Search Google Scholar
    • Export Citation
  • 41.

    Wang W, Zhou PH, Hu W. Overexpression of FOXO4 induces apoptosis of clear-cell renal carcinoma cells through downregulation of Bim. Mol Med Rep 2016; 13(3): 222934. https://doi.org/10.3892/mmr.2016.4789.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 0 0 0
Jul 2023 0 0 0
Aug 2023 0 0 0
Sep 2023 0 0 0
Oct 2023 0 0 0
Nov 2023 320 15 14
Dec 2023 15 1 1