This study aimed to investigate the role of levetiracetam (LEV) and gabapentin (GBP) on mechanical and thermal pain thresholds, as well as n-acetylcysteine (NAC) as an adjuvant, in the pentylenetetrazol (PTZ)-induced post-traumatic epilepsy (PTE) model after mild-traumatic brain injury (TBI) in male Sprague-Dawley rats.
Animals were randomly divided into 7 groups (Control, PTE, PTE+LEV, PTE+GBP, PTE+NAC, PTE+LEV+NAC and PTE+GBP+NAC). Rats received 50 mg kg−1 LEV, 100 mg kg−1 GBP, and combinations of these antiepileptics with 100 mg kg−1 NAC for 14 days after TBI.
While the thermal pain threshold decreased significantly in the PTE group (P < 0.05), it increased in the PTE+LEV, PTE+GBP, and PTE+LEV+NAC groups (P < 0.05, P < 0.001 and P < 0.01, respectively). Interestingly, NAC alone did not affect the thermal pain threshold, but the combination of PTE+LEV+NAC increased the thermal pain threshold. Furthermore, PTE+GBP+NAC administration prevented the effect of GBP on the thermal pain threshold.
The presented study is the first to examine the effect of LEV and GBP in PTE. It was found that PTE decreased the thermal pain threshold, but LEV and GBP applied for 14 days prevented the decrease in PTE-related pain threshold and increased the thermal pain threshold. NAC, which was used as an adjuvant to support antiepileptic drugs, did not influence the thermal pain threshold alone; however, it increased the pain threshold more by potentiating the effect of LEV. Both LEV and GBP have an antihyperalgesic effect in the PTE model facilitated by PTZ, and NAC further reinforces the antihyperalgesic effect of LEV.
Hoffman JM, Pagulayan KF, Zawaideh N, Dikmen S, Temkin N, Bell KR. Understanding pain after traumatic brain injury: impact on community participation. Am J Phys Med Rehabil 2007; 86(12): 962–9. https://doi.org/10.1097/PHM.0b013e31815b5ee5.
Lucke-Wold BP, Nguyen L, Turner RC, Logsdon AF, Chen YW, Smith KE, et al. Traumatic brain injury and epilepsy: underlying mechanisms leading to seizure. Seizure 2015; 33: 13–23. https://doi.org/10.1016/j.seizure.2015.10.002.
Theadom A, Parmar P, Jones K, Barker-Collo S, Starkey NJ, McPherson KM, et al. Frequency and impact of recurrent traumatic brain injury in a population-based sample. J Neurotrauma 2015; 32(10): 674–81. https://doi.org/10.1089/neu.2014.3579.
Herman ST. Epilepsy after brain insult: targeting epileptogenesis. Neurology 2002; 59(9 Suppl 5): S21–6. https://doi.org/10.1212/wnl.59.9_suppl_5.s21.
Pitkänen A, Bolkvadze T, Immonen R. Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neurosci Lett 2011; 497(3): 163–71. https://doi.org/10.1016/j.neulet.2011.02.033.
Bianchin MM, Londero RG, Lima JE, Bigal ME. Migraine and epilepsy: a focus on overlapping clinical, pathophysiological, molecular, and therapeutic aspects. Curr Pain Headache Rep 2010; 14(4): 276–83. https://doi.org/10.1007/s11916-010-0121-y.
Ottman R, Lipton RB, Ettinger AB, Cramer JA, Reed ML, Morrison A, et al. Comorbidities of epilepsy: results from the epilepsy comorbidities and Health (EPIC) survey. Epilepsia 2011; 52(2): 308–15. https://doi.org/10.1111/j.1528-1167.2010.02927.x.
Velioglu SK, Gedikli O, Yıldırım M, Ayar A. Epilepsy may cause increased pain sensitivity: evidence from absence epileptic WAG/Rij rats. Epilepsy Behav 2017; 75: 146–50. https://doi.org/10.1016/j.yebeh.2017.07.007.
Badawy RAB, Jackson GD. Cortical excitability in migraine and epilepsy: a common feature? J Clin Neurophysiol 2012; 29(3): 244–9. https://doi.org/10.1097/WNP.0b013e3182570fee.
Papetti L, Nicita F, Parisi P, Spalice A, Villa MP, Kasteleijn-Nolst Trenité DG. “Headache and epilepsy”--how are they connected? Epilepsy Behav 2013; 26(3): 386–93. https://doi.org/10.1016/j.yebeh.2012.09.025.
Velioglu SK, Gedikli O, Yıldırım M, Ayar A. Does pain sensitivity increase during ictal period? Evidence from absence epileptic WAG/Rij rats. Epilepsy Behav 2018; 87: 14–7. https://doi.org/10.1016/j.yebeh.2018.08.001.
Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A. 2004; 101(26): 9861–6. https://doi.org/10.1073/pnas.0308208101.
O'Connor AB, Dworkin RH. Treatment of neuropathic pain: an overview of recent guidelines. Am J Med. 2009; 122(10 Suppl): S22–32. https://doi.org/10.1016/j.amjmed.2009.04.007.
Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol 2015; 72(3): 355–62. https://doi.org/10.1001/jamaneurol.2014.3558.
Cuzzocrea S, Mazzon E, Costantino G, Serraino I, Dugo L, Calabró G, et al. Beneficial effects of n-acetylcysteine on ischaemic brain injury. Br J Pharmacol 2000; 130(6): 1219–26. https://doi.org/10.1038/sj.bjp.0703421.
Khan M, Sekhon B, Jatana M, Giri S, Gilg AG, Sekhon C, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 2004; 76(4): 519–27. https://doi.org/10.1002/jnr.20087.
Sekhon B, Sekhon C, Khan M, Patel SJ, Singh I, Singh AK. N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res 2003; 971(1): 1–8. https://doi.org/10.1016/s0006-8993(03)02244-3.
Mychasiuk R, Farran A, Angoa-Perez M, Briggs D, Kuhn D, Esser MJ. A novel model of mild traumatic brain injury for juvenile rats. J Vis Exp 2014(94): 51820. https://doi.org/10.3791/51820.
Efendioglu M, Basaran R, Akca M, Ceman D, Demirtas C, Yildirim M. Combination therapy of gabapentin and N-acetylcysteine against posttraumatic epilepsy in rats. Neurochem Res 2020; 45(8): 1802–12. https://doi.org/10.1007/s11064-020-03042-x.
Mousavi-Hasanzadeh M, Rezaeian-Varmaziar H, Shafaat O, Jand A, Palizvan MR. The effect of co-administration of pentylenetetrazole with pilocarpine: new modified PTZ models of kindling and seizure. Pharmacol Biochem Behav 2019; 182: 7–11. https://doi.org/10.1016/j.pbb.2019.04.010.
Yılmaz T, Gedikli Ö, Yildirim M. Evaluation of spatial memory and locomotor activity during hypercortisolism induced by the administration of dexamethasone in adult male rats. Brain Res 2015; 1595: 43–50. https://doi.org/10.1016/j.brainres.2014.04.034.
Wang JY, Gao YH, Qiao LN, Zhang JL, Duan-Mu CL, Yan YX, et al. Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats. BMC Complement Altern Med 2018; 18(1): 74. https://doi.org/10.1186/s12906-018-2134-8.
Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32(1): 77–88. https://doi.org/10.1016/0304-3959(88)90026-7.
Hoffman JM, Lucas S, Dikmen S, Braden CA, Brown AW, Brunner R, et al. Natural history of headache after traumatic brain injury. J Neurotrauma 2011; 28(9): 1719–25. https://doi.org/10.1089/neu.2011.1914.
Asikainen I, Kaste M, Sarna S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia 1999; 40(5): 584–9. https://doi.org/10.1111/j.1528-1157.1999.tb05560.x.
Lucas S, Hoffman JM, Bell KR, Dikmen S. A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia 2014; 34(2): 93–102. https://doi.org/10.1177/0333102413499645.
Frey LC. Epidemiology of posttraumatic epilepsy: a critical review. Epilepsia 2003; 44(s10): 11–7. https://doi.org/10.1046/j.1528-1157.44.s10.4.x.
Englander J, Bushnik T, Duong TT, Cifu DX, Zafonte R, Wright J, et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil 2003; 84(3): 365–73. https://doi.org/10.1053/apmr.2003.50022.
Kharatishvili I, Nissinen JP, McIntosh TK, Pitkänen A. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 2006; 140(2): 685–97. https://doi.org/10.1016/j.neuroscience.2006.03.012.
Brady RD, Casillas-Espinosa PM, Agoston DV, Bertram EH, Kamnaksh A, Semple BD, et al. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis 2019; 123: 8–19. https://doi.org/10.1016/j.nbd.2018.08.007.
Golarai G, Greenwood AC, Feeney DM, Connor JA. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 2001; 21(21): 8523–37. https://doi.org/10.1523/JNEUROSCI.21-21-08523.2001.
Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 2009; 50(Suppl 2): 30–40. https://doi.org/10.1111/j.1528-1167.2008.02008.x.
Zafar SN, Khan AA, Ghauri AA, Shamim MS. Phenytoin versus Leviteracetam for seizure prophylaxis after brain injury - a meta analysis. BMC Neurol 2012; 12: 30. https://doi.org/10.1186/1471-2377-12-30.
Wilson CD, Burks JD, Rodgers RB, Evans RM, Bakare AA, Safavi-Abbasi S. Early and late posttraumatic epilepsy in the setting of traumatic brain injury: a meta-analysis and review of antiepileptic management. World Neurosurg 2018; 110: e901–e6. https://doi.org/10.1016/j.wneu.2017.11.116.
Caudle KL, Lu XCM, Mountney A, Shear DA, Tortella FC. Neuroprotection and anti-seizure effects of levetiracetam in a rat model of penetrating ballistic-like brain injury. Restor Neurol Neurosci 2016; 34(2): 257–70. https://doi.org/10.3233/RNN-150580.
Lu XCM, Cao Y, Mountney A, Liao Z, Shear DA, Tortella FC. Combination therapy of levetiracetam and gabapentin against nonconvulsive seizures induced by penetrating traumatic brain injury. J Trauma Acute Care Surg 2017; 83(1 Suppl 1): S25–S34. https://doi.org/10.1097/TA.0000000000001470.
Schwedt TJ. Structural and functional brain alterations in post-traumatic headache attributed to mild traumatic brain injury: a narrative review. Front Neurol 2019; 10: 615. https://doi.org/10.3389/fneur.2019.00615.
Lew HL, Lin PH, Fuh JL, Wang SJ, Clark DJ, Walker WC. Characteristics and treatment of headache after traumatic brain injury: a focused review. Am J Phys Med Rehabil 2006; 85(7): 619–27. https://doi.org/10.1097/01.phm.0000223235.09931.c0.
Wang XQ, Lang SY, He MW, Zhang X, Zhu F, Dai W, et al. High prevalence of headaches in patients with epilepsy. J Headache Pain 2014; 15(1): 70. https://doi.org/10.1186/1129-2377-15-70.
Curros-Criado MM, Herrero JF. The antinociceptive effect of systemic gabapentin is related to the type of sensitization-induced hyperalgesia. J Neuroinflammation 2007; 4: 15. https://doi.org/10.1186/1742-2094-4-15.
Ozcan M, Ayar A. Modulation of action potential and calcium signaling by levetiracetam in rat sensory neurons. J Recept Signal Transduct Res 2012; 32(3): 156–62. https://doi.org/10.3109/10799893.2012.672993.
Cortes-Altamirano JL, Reyes-Long S, Bonilla-Jaime H, Clavijo-Cornejo D, Vargas J, Bandala C, et al. Acute administration of levetiracetam in tonic pain model modulates gene expression of 5HT(1A) and 5HT(7) receptors in the thalamus of rats (Rattus norvergicus). Mol Biol Rep 2020; 47(5): 3389–96. https://doi.org/10.1007/s11033-020-05419-1.
Sills GJ. The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol 2006; 6(1): 108–13. https://doi.org/10.1016/j.coph.2005.11.003.
Yu F, Zhao ZY, He T, Yu YQ, Li Z, Chen J. Temporal and spatial dynamics of peripheral afferent-evoked activity in the dorsal horn recorded in rat spinal cord slices. Brain Res Bull 2017; 131: 183–91. https://doi.org/10.1016/j.brainresbull.2017.04.012.
Zhang BY, Zhang YL, Sun Q, Zhang PA, Wang XX, Xu GY, et al. Alpha-lipoic acid downregulates TRPV1 receptor via NF-κB and attenuates neuropathic pain in rats with diabetes. CNS Neurosci Ther 2020; 26(7): 762–72. https://doi.org/10.1111/cns.13303.