View More View Less
  • 1 Semmelweis Egyetem, 1085 Budapest, Üllői út 26.
  • 2 Országos Onkológiai Intézet, Budapest
  • 3 Semmelweis Egyetem, Budapest
  • 4 Semmelweis Egyetem, Budapest
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $96.00

Absztrakt:

A follicularis lymphoma terápiájában a rituximab alkalmazásának köszönhetően a betegek várható élettartama számottevően megnőtt, azonban a betegség jelenlegi tudásunk szerint továbbra is gyógyíthatatlan. Az utóbbi 10 év kutatásainak eredményeként sikerült feltárni a follicularis lymphoma genetikai hátterét, ami a betegség rizikóbecslésének és terápiájának szempontjából is kiemelkedő fontossággal bír. A számos jelátviteli útvonalban azonosított visszatérő mutációk közül napjainkig a legnagyobb gyakorlati jelentőségűnek az epigenetikai szabályozást érintő mutációk bizonyultak. Az EZH2 hiszton metil-transzferázt a funkciónyeréssel járó mutációi a follicularis lymphomás betegek mintegy 20%-ában ígéretes terápiás célponttá teszik. Több gyógyszercég is szelektív EZH2-inhibitorok fejlesztésébe kezdett, amelyek közül az Epizyme tazemetostat (EPZ6438) nevű EZH2 gátlószere bizonyult a leghatékonyabbnak, melyet mára II. fázisú klinikai tanulmányokban alkalmaznak follicularis lymphoma kezelésére. In vitro kísérletek alapján a szelektív EZH2-inhibitorkezelés fokozott mértékben csökkentette az EZH2-mutációt hordozó sejtek proliferációját a vad típusú sejtekhez képest. A klinikai vizsgálatok megerősítették az EZH2-mutációval rendelkező betegek fokozott érzékenységét a tazemetostatra, amellyel II. fázisú klinikai tanulmányokban kezelve az EZH2-mutációt hordozó follicularis lymphomás betegeket, az esetek 71%-ánál teljes válaszadási arányt értek el. Az EZH2-gátló terápia további sikeres klinikai eredmények esetén a célzott, mutációs státuszon alapuló epigenetikai terápia prototípusa lehet follicularis lymphomában, mely reményeink szerint tovább növeli a betegek várható élettartamát, továbbá a jövőben lehetőséget nyújthat kemoterápia-mentes protokollok kialakítására is.

  • 1

    Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol. 1998; 9: 717–720.

  • 2

    Tan D, Horning SJ, Hoppe RT, et al. Improvements in observed and relative survival in follicular grade 1-2 lymphoma during 4 decades: the Stanford University experience. Blood 2013; 122: 981–987.

  • 3

    Casulo C, Burack WR, Friedberg JW. Transformed follicular non-Hodgkin lymphoma. Blood 2015; 125: 40–47.

  • 4

    Cullen MH, Lister TA, Brearley RI, et al. Histological transformation of non-Hodgkin’s lymphoma: a prospective study. Cancer 1979; 44: 645–651.

  • 5

    Hua C, Zorn S, Jensen JP, et al. Consequences of the t(14;18) chromosomal translocation in follicular lymphoma: deregulated expression of a chimeric and mutated BCL-2 gene. Oncogene Res. 1988; 2: 263–275.

  • 6

    Roulland S, Lebailly P, Lecluse Y, et al. Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals. Leukemia 2006; 20: 158–162.

  • 7

    Okosun J, Bodor C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014; 46: 176–181.

  • 8

    Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014; 6: 130–140.

  • 9

    Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

  • 10

    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003; 33 Suppl: 245–254.

  • 11

    Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293: 1074–1080.

  • 12

    Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128: 683–692.

  • 13

    Araf S, Okosun J, Koniali L, et al. Epigenetic dysregulation in follicular lymphoma. Epigenomics 2016; 8: 77–84.

  • 14

    Ortega-Molina A, Boss IW, Canela A, et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 2015; 21: 1199–1208.

  • 15

    Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015; 21: 1190–1198.

  • 16

    Jiang Y, Ortega-Molina A, Geng H, et al. CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 2017; 7: 38–53.

  • 17

    Pon JR, Wong J, Saberi S, et al. MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation. Nat Commun. 2015; 6: 7953.

  • 18

    Sneeringer CJ, Scott MP, Kuntz KW, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 2010; 107: 20980–20985.

  • 19

    Yap DB, Chu J, Berg T, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 2011; 117: 2451–2459.

  • 20

    Beguelin W, Popovic R, Teater M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 2013; 23: 677–692.

  • 21

    Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15: 57–67.

  • 22

    Ketel CS, Andersen EF, Vargas ML, et al. Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes. Mol Cell Biol. 2005; 25: 6857–6868.

  • 23

    Pasini D, Bracken AP, Jensen MR, et al. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004; 23: 4061–4071.

  • 24

    Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298: 1039–1043.

  • 25

    Vire E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871–874.

  • 26

    Velichutina I, Shaknovich R, Geng H, et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247–5255.

  • 27

    Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010; 42: 181–185.

  • 28

    Bödör C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 2013; 122: 3165–3168.

  • 29

    Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015; 16: 1111–1122.

  • 30

    Huet S, Xerri L, Tesson B, et al. EZH2 alterations in follicular lymphoma: biological and clinical correlations. Blood Cancer J. 2017; 7: e555.

  • 31

    Miranda TB, Cortez CC, Yoo CB, et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 2009; 8: 1579–1588.

  • 32

    Tan J, Yang X, Zhuang L, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007; 21: 1050–1063.

  • 33

    McCabe MT, Ott HM, Ganji G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108–112.

  • 34

    Knutson SK, Wigle TJ, Warholic NM, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012; 8: 890–896.

  • 35

    Garapaty-Rao S, Nasveschuk C, Gagnon A, et al. Identification of EZH2 and EZH1 small molecule inhibitors with selective impact on diffuse large B cell lymphoma cell growth. Chem Biol. 2013; 20: 1329–1339.

  • 36

    Qi W, Chan H, Teng L, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A 2012; 109: 21360–21365.

  • 37

    Italiano A, Soria JC, Toulmonde M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018; 19: 649–659.

  • 38

    Morschhauser F, Salles G, McKay P, et al. Interim report from a phase 2 multicenter study of tazemetostat, an EZH2 inhibitor, in patients with relapsed or refractory B-cell non-Hodgkin lymphomas. Hematological Oncology 2017; 35: 24–25.

  • 39

    Franck Morschhauser HT, Aristeidis Chaidos, Tycel Phillips, et al. Interim update from a phase 2multicenter study of tazemetostat, an ezh2 inhibitor, in patients with relapsed or refractory follicular lymphoma. 23rd Congress of the European Hematology Association, 14–17 June 2018, Stockholm, Sweden.

  • 40

    Gibaja V, Shen F, Harari J, et al. Development of secondary mutations in wild-type and mutant EZH2 alleles cooperates to confer resistance to EZH2 inhibitors. Oncogene 2016; 35: 558–566.

  • 41

    Bisserier M, Wajapeyee N. Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas. Blood 2018; 131: 2125–2137.

  • 42

    Mrinal M, Gounder SS, Patrick Schöffski, Steven Attia, et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with INI1 negative epithelioid sarcoma (NCT02601950). J Clin Oncol. 2017; 35: 11058–11058.

  • 43

    Glass M, Zauderer PS, Le Moulec S, Popat S, et al. Phase 2, multicenter study of the EZH2 inhibitor tazemetostat as monotherapy in adults with relapsed or refractory (R/R) malignant mesothelioma (MM) with BAP1 inactivation. J Clin Oncol. 2018; 36: 8515–8515.