Az elmúlt évtized aktív kutatómunkája során világossá vált, hogy a csontvelői mikrokörnyezetet strómasejtek heterogén populációja alkotja, ami a hemopoetikus ős- és elődsejtek számára „niche”-eket képez. A kutatások felfedték a niche szerkezetét és az alkotóelemeik közötti információcserét, mely hatást gyakorol az őssejtek termelődésére, fennmaradására és expanziójára. A csontvelői niche változásai hematológiai daganatok során gyakran megfigyelhetőek. Világossá vált, hogy a transzformálódott daganatsejtek és niche-ük között kétirányú az információcsere, a niche pedig korábban nem ismert szerepet játszik a hematológiai neopláziák iniciációjában és progressziójában. Ennek megfelelően, a malignitásra szupportív niche, a stróma terápiás célpontként merül fel hematológiai malignitások gyógykezelése során. Összefoglalónkban a hemopoetikusőssejt-niche biológiájának bemutatását követően bemutatjuk, hogy a strómasejtek genetikai megváltozása és a leukémia következményeként módosuló niche milyen szerepet játszhat a vérképzőszervi daganatok életében.
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7–25.
Hoggatt J, Kfoury Y, Scadden DT. Hematopoietic stem cell niche in health and disease. Annu Rev Pathol. 2016; 11: 555–581.
Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017; 17: 573–590.
Wei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny. Immunity 2018; 48: 632–648.
Sanchez-Aguiler A, Mendez-Ferrer S. The hematopoietic stem-cell niche in health and leukemia. Cell Mol Life Sci. 2017; 74: 579–590.
Doron B, Handu M, Kurre P. Concise review: Adaptation of the bone marrow stroma in hematopoietic malignancies: Current concepts and models. Stem Cells 2018; 36: 304–312.
Acar M, Kocherlakota KS, Murphy MM, et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 2015; 526: 126–130.
Koechlein CS, Harris JR, Lee TK, et al. High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo. Nat Commun. 2016; 7: 12169.
Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013; 502: 637–643.
Itkin T, Gur-Cohen S, Spencer JA, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 2016; 532: 323–328.
Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.
Kusumbe AP, Ramasamy SK, Itkin T, et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 2016; 532: 380–384.
Gomariz A, Helbling PM, Isringhausen S, et al. Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nat Commun. 2018; 9: 2532.
Isern J, García-García A, Martín AM, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife 2014; 3: e03696.
Maryanovich M, Takeishi S, Frenette PS. Neural regulation of bone and bone marrow. Cold Spring Harb Perspect Med. 2018 Mar 2. pii: a031344. DOI:10.1101/cshperspect.a031344. [Epub ahead of print]
Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014; 20: 1321–1326.
Sasine JP, Yeo KT, Chute JP. Concise review: Paracrine functions of vascular niche cells in regulating hematopoietic stem cell fate. Stem Cells Transl Med. 2017; 6: 482–489.
Boyd AL, Campbell CJ, Hopkins CI, et al. Niche displacement of human leukemic stem cells uniquely allows their competitive replacement with healthy HSPCs. J Exp Med. 2014; 211: 1925–1935.
Craver BM, El Alaoui K, Scherber RM, Fleischman AG. The critical role of inflammation in the pathogenesis and progression of myeloid malignancies. Cancers (Basel). 2018; 10. pii: E104.
Wang A, Zhong H. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia. Hematology 2018; 14: 1–11.
Testa U, Saulle E, Castelli G, et al. Endothelial progenitor cells in hematologic malignancies. Stem Cell Investig. 2016; 3: 26.
Hanoun M, Zhang D, Mizoguchi T, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 2014; 15: 365–375.
Duarte D, Hawkins ED, Akinduro O, et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 2018; 22: 64–77e66.
Xiao P, Sandhow L, Heshmati Y, et al. Distinct roles of mesenchymal stem and progenitor cells during the development of acute myeloid leukemia in mice. Blood Adv. 2018; 2: 1480–1494.
Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 2013; 13: 285–299.
Arranz L, Sanchez-Aguilera A, Martin-Perez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 2014; 512: 78–81.
Mager LF, Riether C, Schürch CM, et al. IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. J Clin Invest. 2015; 125: 2579–2591.
Hawkins ED, Duarte D, Akinduro O, et al. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 2016; 538: 518–522.
Duan CW, Shi J, Chen J, et al. Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 2014; 25: 778–793.
Marino S, Roodman GD. Multiple myeloma and bone: The fatal interaction. Cold Spring Harb Perspect Med. 2018; 8: pii: a031286.
Butler JT, Abdelhamed S, Kurre P. Extracellular vesicles in the hematopoietic microenvironment. Haematologica 2018; 103: 382–394.
Moschoi R, Imbert V, Nebout M, et al. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 2016; 128: 253–264.
Marlein CR, Zaitseva L, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 2017; 130: 1649–1660.
de Rooij B, Polak R, Stalpers F, et al. Tunneling nanotubes facilitate autophagosome transfer in the leukemic niche. Leukemia 2017; 31: 1651–1654.
Walkley CR, Olsen GH, Dworkin S, et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 2007; 129: 1097–1110.
Jobe F, Patel B, Kuzmanovic T, Makishima H, et al. Deletion of Ptpn1 induces myeloproliferative neoplasm. Leukemia 2017; 31: 1229–1234.
Dong L, Yu W-M, Zheng H, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 2016; 539: 304–308.
Kode A, Manavalan JS, Mosialou I, et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 2014; 506: 240–244.
Kode A, Mosialou I, Manavalan SJ, et al. FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice. Leukemia 2016; 30: 1–13.
Raaijmakers MH, Mukherjee S, Guo S, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.
Zambetti NA, Ping Z, Chen S, et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 2016; 19: 613–627.
Xiao P, Dolinska M, Sandhow L, et al. Sipa1 deficiency-induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Adv. 2018; 2: 534–548.
Suárez-González J, Martínez-Laperche C, Kwon M, et al. Donor cell-derived hematologic neoplasms after hematopoietic stem cell transplantation: A systematic review. Biol Blood Marrow Transplant. 2018; 24: 1505–1513.
Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 2018; 22: 157–170.
Desai P, Mencia-Trinchant N, Savenkov O, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med. 2018; 24: 1015–1023.
Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers. 2017; 3: 17046.
Das R, Strowig T, Verma R, et al. Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat Med. 2016; 22: 1351–1357.
Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011; 17: 320–329.
Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018; 15: 366–381.