View More View Less
  • 1 Semmelweis Egyetem, 1078 Budapest, Korányi S. utca 2/A
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $96.00

Absztrakt:

Számos kemoterápiás készítmény dózislimitáló mellékhatása a kemoterápia indukálta perifériás neuropathia, azonban nemcsak a klasszikus kemoterápiás kezelés kapcsán léphet fel idegkárosodás, hanem az új típusú daganatellenes gyógyszerek (pl. proteaszómagátlók, immunmodulánsok, molekulárison célzott kezelések) esetében is számolni kell ezzel a szövődménnyel. Ez a mellékhatás a kezelés alatt és hosszú távon is kedvezőtlenül befolyásolja a beteg életminőségét és a gyógyszer dózisának csökkentésére, esetleg felfüggesztésére kényszerítheti a kezelőorvost, ami viszont a beteg gyógyulási esélyeit ronthatja. Mivel jelenleg nem áll rendelkezésre bizonyítottan hatékony kezelés ezen mellékhatás megelőzésére/kezelésére, ezért a szövődmény prevenciója, korai felismerése és a daganatellenes terápia időben történő módosítása különösen nagy jelentőségű. A daganatellenes kezelés következtében létrejött neuropathia diagnosztikájának egységesítésével, megelőzésével és kezelésével kapcsolatos klinikai vizsgálatok mellett a károsodás patomechanizmusának, genetikai hátterének feltárását célzó alapkutatások folytatása is szükséges.

Munkánk során áttekintjük a daganatellenes kezelés indukálta neuropathia pathomechanizmusát, diagnosztikáját és javaslatot teszünk egy új, (a már meglevő kérdőívek elemeit felhasználó) egyszerű kérdőív használatára, mely hangvillavizsgálattal kiegészítve segíti a neuropathia diagnózisának gyors, betegágy melletti felállítását. Ezen túlmenően kitérünk a szövődmény megelőzésének és kezelésének új lehetőségeire és rámutatunk a jelenlegi kutatási irányokra. Ezek eredményeképpen a jövőben a kemoterápia indukálta neuropathiával szembeni (gyógyszeres és nem gyógyszeres) fegyvertárunk bővülése várható.

  • 1

    Pike CT, Birnbaum HG, Muehlenbein C, et al. Healthcare costs and workloss burden of patients with chemotherapy-associated peripheral neuropathy in breast, ovarian, head and neck, and nonsmall cell lung cancer. Chemother Res Pract. 2012; 2012: 913848

  • 2

    Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment and prevention. Neuro Oncol. 2012; 14(Suppl 4): 45–54.

  • 3

    Staff NP, Grisold A, Grisold W, et al. Chemotherapy-induced peripheral neuropathy: a current review. Ann Neurol. 2017; 81: 772–781.

  • 4

    Cavaletti G, Cornblath DR, Merkies IS, et al. The Chemotherapy Induced Peripheral Neuropathy Outcome Measures Standardization Study: From consensus to the first validity and reliability findings. Ann Oncol. 2013; 24: 454–462.

  • 5

    Argyriou AA, Cavaletti G, Bruna J, et al. Kalofonos HP: Bortezomib-induced peripheral neurotoxicity: an update. Arch Toxicol. 2014; 88: 1669–1679.

  • 6

    Shah A, Hoffman EM, Mauermann ML, et al. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort. J Neurol Neurosurg Psychiatry 2018; 89: 636–641.

  • 7

    Dimopoulos MA, Mateos MV, Richardson PG, et al. Risk factors for and reversibility of peripheral neuropathy associated with bortezoib-melphalan-prednisone in newly diagnosed patients with multiple myeloma: subanalysis of the phase 3 VISTA study. Eur. J Haematol. 2011; 86: 23–31.

  • 8

    Brewer JR, Morrison G, Dolanb ME, et al. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecologic Oncology 2016; 140: 176–183.

  • 9

    Alberti P, Cavaletti G. Management of side effects in the personalized medicine era: chemotherapy induced peripheral neuropathy. Methods Mol Biol. 2014; 1175: 301–322.

  • 10

    Cavaletti G, Alberti P, Marmiroli P. Chemotherapy induced peripheral neurotoxicity in the era of pharmacogenomics. Lancet 2011; 12: 1151–1161.

  • 11

    Cliff J, Jorgensen AL, Lord R, et al. The molecular genetics of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2017; 120: 127–140.

  • 12

    Zhang H, Boyette-Davis JA, Kosturakis AK, et al. Induction of chemoattractant protein-1 (MCP-1) and its receptor CCR2 in primary sensory neurons contributes to paclitaxel-induced peripheral neuropathy. J Pain 2013; 14: 1031–1044.

  • 13

    Miao X, Meng X, Wu G, et al. Upregulation of cystathionine-β-synthetase expression contributes to inflammatory pain in rat temporomandibular joint. Mol Pain 2014; 10: 9.

  • 14

    Campo C, da Silva Filho MI, Weinhold N, et al. Bortezomib-induced peripheral neuropathy: A genome-wide association study on multiple myeloma patients. Hematol Oncol. 2018; 36: 232–237.

  • 15

    Magrangeas F, Kuiper R, Avet-Loiseau H, et al. A genome-wide association study identifies a novel locus for bortezomib-induced peripheral neuropathy in European patients with multiple myeloma. Clin Cancer Res. 2016; 22: 4350–4355.

  • 16

    Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Curr Opin Neurol. 2015; 28: 500–507.

  • 17

    Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy: A comprehensive survey. Cancer Treatment Reviews 2014; 40: 872–882.

  • 18

    Gutiérrez-Gutiérrez G, Sereno M, Miralles A, et al. Chemotherapy-induced peripheral neuropathy: clinical features, diagnosis, prevention and treatment strategies. Clin. Trans. Oncol. 2010; 12: 81–91.

  • 19

    Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neurosci Lett. 2015; 596: 90–107.

  • 20

    Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): what we need and what we know. J Peripher Nerv Syst. 2014; 19: 66–76.

  • 21

    Ferrier J, Pereira V, Busserolles J et al. Emerging trends in understanding chemotherapy induced peripheral neuropathy. Curr Pain Headache Rep. 2013; 17: 364.

  • 22

    Low PA, Nickander KK, Trischler HJ. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 1997; 46(Suppl 2): S38–S42.

  • 23

    Duggett NA, Griffiths LA, McKenna OE, et al. Oxidative stress in the development maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 2016; 333: 13–26.

  • 24

    Meregalli C, Chiorazzi A, Crozzi VA, et al. Evaluation of tubulin polymerization and chronic inhibition of proteasome as citotoxicity mechanisms in bortezomib induced peripheral neuropathy. Cell Cycle 2014; 13: 612–621.

  • 25

    Bennett GJ, Doyle T, Selvemini D. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol. 2014; 10: 326–336.

  • 26

    Pareyson D, Piscoquito G, Moroni I, et al. Peripheral neuropathy in mitochondrial disorders. Lancet Neurol. 2013; 12: 1011–1024.

  • 27

    Stillman M, Cata JP. Management of chemotherapy-induced peripheral neuropathy. Current Pain and Headache Reports 2006; 10: 279–287.

  • 28

    Argyriou AA, Bruna J, Marmiroli P, et al. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol. 2012; 82: 51–77.

  • 29

    Richardson PG, Briemberg H, Jagannath S, et al. Frequency, characteristics and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. Journal of Clinical Oncology 2006; 24: 3113–3120.

  • 30

    Istenes I, Nagy Zs, Demeter J. Kemoterápia okozta szenzoros neuropátiák jellegzetességei, diagnosztikája és kezelése. Magyar Onkológia 2016; 60: 165–175.

  • 31

    Cata JP, Weng HR, Chen JH. Altered discharges of spinal wide dynamic range neurons and down-regulation of glutamate transporter expression in rats with paclitaxel-induced hyperalgesia. Neuroscience 2006; 138: 329–338.

  • 32

    National Cancer Institute Common Terminology Criteria for Adverse Events v.4.0. NCI, NIH, DHHS, May 29. NIH publication #09-7473.

  • 33

    Cavaletti G, Marmioli P. Chemotherapy induced peripheral neurotoxicity. Nat Rev Neurol. 2010; 6: 656–666.

  • 34

    Ma J, Kavelaars A, Dougherty PM, et al. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018; 124: 2289–2298.

  • 35

    Hershman DL, Weimer LH, Wang A, et al. Association between patient reported outcomes and quantitative sensory tests for measuring long-term neurotoxicita in breast cancer survirors treated with adjuvant paclitaxel chemotherapy. Breast Cancer Res Treat. 2011; 124: 767–774.

  • 36

    Masson EA, Veves A, Fernando D, et al. Current perception thresholds: a new, quick and reproducible method for the assessment of peripheral neuropathy in diabetes mellitus. Diabetologia 1989; 32: 724–728.

  • 37

    Paice JA, Mulvey M, Bennett M, et al. AAPT diagnostic criteria for chronic cancer pain conditions. J Pain 2017; 18: 233–246.

  • 38

    Hershman DL, Lacchetti C, Dworkin RH, et al. Prevention and management of chemotherapy induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2014; 32: 1–30.

  • 39

    Brami C, Bao T, Gang D. Natural products and complementary therapies for chemotherapy-induced peripheral neuropathy: A systematic review. Crit Rev Oncol Hematol. 2016; 98: 325–334.

  • 40

    Majithia N, Temkin SM, Ruddy KJ, et al. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: outcomes and lessons. Support Care Cancer 2016; 24: 1439–1447.

  • 41

    Smith EM, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 2013; 309: 1359–1367.

  • 42

    Mohty B, El-Cheikh J, Yakoub-Agha I, et al. Peripheral neuropathy and new treatments for multiple myeloma: background and practical recommendations. Haematologica 2010; 95: 311–319.

  • 43

    PG Richardson, Delforge M, Beksac M, et al. Management of treatment-emergent peripheral neuropathy in multiple myeloma. Leukemia 2012; 26: 595–608.

  • 44

    Moreau P, Pylypenko H, Grosicki S, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011; 12: 431–440.

  • 45

    Hu B, Zhou Q, Wu T, et al. Efficacy and safety of subcutaneous versus intravenous bortezomib in multiple myeloma: a meta-analysis. Int J Clin Pharmacol Ther. 2017; 55: 329–338.

  • 46

    Krukowski K, Nijboer CH, Huo X, et al. Prevention of chemotherapy induced peripheral neuropathy by the small molecule inhibitor pifithrin-mu. Pain 2015; 156: 2184–2192.

  • 47

    Maj MA, Ma J, Krukowski KN, et al. Inhibition of mitochondrial p53 accumulation by PFT-mu prevents cisplatin-induced peripheral neuropathy. Front Mol. Neurosci. 2017; 10: 108.

  • 48

    Schloss JM, Colosimo M, Airey C, et al. Nutraceuticals and chemotherapy induced peripheral neuropathy (CIPN): a systematic review. Clin Nutr. 2013; 32: 888–893.

  • 49

    Sisignano M, Baron R, Scholich K, et al. Mechanism-based treatment for chemotherapy induced peripheral neuropathic pain. Nat Rev Neurol. 2014; 10: 694–707.

  • 50

    Callander N, Markovina S, Eickhoff J, et al. Acetyl – L-Carnitine (ALCAR) for the prevention of chemotherapy-induced peripheral neuropathy in patients with relapsed of refractory multiple myeloma treated with bortezomib, doxorubicin and low-dose dexamethason: a study from the Wisconsin Oncology Network. Cancer Chemother Pharmacol. 2014; 74: 875–882.

  • 51

    Hershman DL, Unger JM, Crew KD, et al. Randomized double-blind placebo-controlled trial of acetyl-L carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J Clin Oncol. 2013; 31: 2627–2633.

  • 52

    Ma J, Kavelaars A, Dougherty PM, et al. Beyond symptomatic relief for chemotherapy-induced periheral neuropathy: targeting the source. Cancer 2018; 124: 2289–2298.

  • 53

    Polvani S, Tarocchi M, Galli A. PPARγ and oxidative stress: con(beta) catenating NRF2 and FOXO. PPAR Res. 2012; 2012: 641087.

  • 54

    Chung SS, Kim M, Youn BS, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol. 2009; 29: 20–30.

  • 55

    Lyons DN, Zhang L, Danaher RJ, et al. PPARγ agonists attenuate trigeminal neuropathic pain. Clin J Pain 2017; 33: 1071–1080.

  • 56

    Tokubuchi I, Tajiri Y, Iwata S, et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One 2017; 12: e0171293.

  • 57

    Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 2013; 110: 972–977.

  • 58

    Choi H, Kim HJ, Kim J, et al. Increased acetylation of peroxiredoxin1 by HDAC6 inhibition leads to recovery of Aβ-induced impaired axonal transport. Mol Neurodegener. 2017; 12:23.

  • 59

    Lees JG, Makker PG, Tonkin RS, et al: Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer 2017; 73: 22–29.

  • 60

    Ozaktay AC, Kallakuri S, Takebayashi T, et al. Effects of interleukin 1 beta, interleukin-6 and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J. 2006; 15: 1529–1537.

  • 61

    Pachman DR, Dockter T, Zekan PJ, et al. A pilot study of minocycline for the prevention of paclitaxel-associated neuropaty. ACCRU study RU221408I. Support Care Cancer 2017; 25: 3407–3416.

  • 62

    Krukowski K, Eijkelkamp N, Laumet G, et al. CD8+ T cdells and endogenous IL-10 are required for resolution of chemotherapy induced neuropathic pain. J Neurosci. 2016; 36: 11074–11083.

  • 63

    Prinsloo S, Novy D, Driver L, et al. Randomized controlled trial of neurofeedback on chemotherapy-induced peripheral neuropathy: A pilot study. Cancer 2017; 123: 1989–1997.

  • 64

    Majithia N, Smith TJ, Coyne PJ, et al. Scrambler Therapy for the management of chronic pain. Support Care Cancer 2016; 24: 2807–2814.

  • 65

    Goudra B, Shah D, Balu G, et al. Repetitive Transcranial Magnetic Stimulation in Chronic Pain: A Meta-analysis. Anesth Essays Res. 2017; 11: 751–757.

  • 66

    Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 2015; 25(Suppl 3): 1–72.

  • 67

    Schneider CM, Hsieh CC, Sprod LK, et al. Cancer treatment-induced alterations in muscular fitness and quality of life: the role of exercise training. Ann Oncol. 2007; 18: 1957–1962.

  • 68

    Schenier CM, Dennehy CA, Roozeboom M, et al. A model program: exercise intervention for cancer rehabilitation. Integr Cancer Ther. 2002; 1: 76–82.

  • 69

    Balducci S, Iacobellis G, Parisi L, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Its Complicat. 2006; 20: 216–223.

  • 70

    Wonders KY, Reigle BS, Drury DG. Treatment strategies for chemotherapy-induced peripheral neuropathy: potential role of exercise. Oncol Rev. 2010; 4: 117–125.