View More View Less
  • 1 Dél-pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, 1097 Budapest, Albert Flórián utca 5–7.
  • 2 Semmelweis Egyetem, Budapest
  • 3 Dél-pesti Centrumkórház, Országos Hematológiai és Infektológiai Intézet, Budapest
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $96.00

Absztrakt:

Az izocitrát dehidrogenáz 1 és 2 szomatikus mutációk az akut myeloid leukémia visszatérő genetikai eltérései, tágabb értelemben vett epigenetikus hatásmóddal. Az irodalomban ellentmondó adatok szerepelnek arra vonatkozóan, hogy e szerzett genetikai eltérések pre-leukémiás, leukémia alapító vagy domináns klónban alakulnak ki.

Tanulmányunk célja az izocitrát dehidrogenáz 1 és 2 mutációk gyakoriságának, egyéb genetikai eltérésekkel való társulásának, illetve a diagnózis és relapszusminta párokban észlelt stabilitásának vizsgálata akut myeloid leukémiában.

A vizsgálatba 2001–2018 között Intézményünkben konszekutívan diagnosztizált és kezelt 748 akut myeloid leukémiában szenvedő beteget vontunk be. A mutációk vizsgálata komplex algoritmus szerint történt, olvadásigörbe-analízissel, allélspecifikus polimeráz-láncreakcióval és Sanger-szekvenálással.

A betegek 8,6%-a (64/748) rendelkezett izocitrát dehidrogenáz 1 mutációval és 11%-a (82/748) izocitrát dehidrogenáz 2 mutációval. Mindkét mutáció főként normál kariotípussal társult (58,3%, p = 0,0135; 58,1% p = 0,006) a mutációnegatívakhoz (39,3%) képest. Az izocitrát dehidrogenáz 1 mutációk 52,4%-a (p < 0,001), az izocitrát dehidrogenáz 2 mutációk 39%-a (p < 0,001) nucleophosminmutációval együtt fordult elő (a mutációnegatív betegekhez képest: 24.3%). Az izocitrát dehidrogenáz 1 mutáció 96,2%-ban (102/106), az izocitrát dehidrogenáz 2 97,4% (111/114) stabilan jelen volt a diagnózisos és relapszusos mintapárokban.

Vizsgálataink megerősítették, hogy az izocitrát dehidrogenáz mutációk az akut myeloid leukémia leggyakoribb genetikai eltérései közé tartoznak (19,5%). A mutációk stabil jelenléte a diagnózis és relapszusminta párokban a mutáció korai kialakulását sugallja (pre-leukémiás vagy leukémiaalapító). Ezek a megfigyelések hangsúlyozzák az izocitrát dehidrogenáz mutációk vizsgálatának szerepét a célzott terápia kiválasztásában és a mérhető reziduális betegség követésében akut myeloid leukémiában.

  • 1

    Clark O, Yen K, Mellinghoff IK. Molecular pathways: Isocitrate dehydrogenase mutations in cancer. Clin Cancer Res. 2016; 22(8): 1837–1842.

  • 2

    Willander K, Falk IJ, Chaireti R, et al. Mutations in the isocitrate dehydrogenase 2 gene and IDH1 SNP 105C > T have a prognostic value in acute myeloid leukemia. Biomark Res. 2014; 2: 18.

  • 3

    Montalban-Bravo G, DiNardo CD. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018; 14(10): 979–993.

  • 4

    Delhommeau F, Dupont S, Della Valle V. et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009; 360(22): 2289–2301.

  • 5

    Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010; 466(7310): 1129–1133.

  • 6

    Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010; 18(6): 553–567.

  • 7

    Platt MY, Fathi AT, Borger DR, et al. Detection of dual IDH1 and IDH2 mutations by targeted next-generation sequencing in acute myeloid leukemia and myelodysplastic syndromes. J Mol Diagn. 2015; 17(6): 661–668.

  • 8

    Losman JA, Looper RE, Koivunen P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339(6127): 1621–1625.

  • 9

    Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19(1): 17–30.

  • 10

    Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015; 21(2): 178–184.

  • 11

    Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 2013; 121(18): 3563–3572.

  • 12

    Pardanani A, Lasho TL, Finke CM, et al. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia 2010; 24(6): 1146–1151.

  • 13

    Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010; 28(14): 2348–2355.

  • 14

    Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016; 374(23): 2209–2221.

  • 15

    Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010; 28(14): 2356–2364.

  • 16

    Molenaar RJ, Thota S, Nagata Y, et al. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemi. 2015; 29(11): 2134–2142.

  • 17

    Chen C, Liu Y, Lu C, et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 2013; 27(18): 1974–1985.

  • 18

    Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2018; 131(12): 1275–1291.

  • 19

    Koszarska M, Bors A, Feczko A, et al. Type and location of isocitrate dehydrogenase mutations influence clinical characteristics and disease outcome of acute myeloid leukemia. Leuk Lymphoma 2013; 54(5): 1028–1035.

  • 20

    Thiede C, Koch S, Creutzig E, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006; 107(10): 4011–4020.

  • 21

    Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98(6): 1752–1759.

  • 22

    Kottaridis PD, Gale RE, Langabeer SE, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100(7): 2393–2398.

  • 23

    Aref S, Kamel Areida el S, Abdel Aaal MF, et al. Prevalence and clinical effect of IDH1 and IDH2 mutations among cytogenetically normal acute myeloid leukemia patients. Clin Lymphoma Myeloma Leuk. 2015; 15(9): 550–555.

  • 24

    Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22): 2059–2074.

  • 25

    Janin M, Mylonas E, Saada V, et al. Serum 2-hydroxyglutarate production in IDH1- and IDH2-mutated de novo acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol. 2014; 32(4): 297–305.

  • 26

    Boddu P, Takahashi K, Pemmaraju N, et al. Influence of IDH on FLT3-ITD status in newly diagnosed AML. Leukemia 2017; 31(11): 2526–2529.

  • 27

    Patel JP, Gonen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012; 366(12): 1079–1089.

  • 28

    DiNardo CD, Jabbour E, Ravandi F, et al. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia 2016; 30(4): 980–4.

  • 29

    DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015; 90(8): 732–736.

  • 30

    Fernandez-Mercado M, Yip BH, Pellagatti A, et al. Mutation patterns of 16 genes in primary and secondary acute myeloid leukemia (AML) with normal cytogenetics. PLoS One. 2012; 7(8): e42334.

  • 31

    Metzeler KH, Herold T, Rothenberg-Thurley M, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 2016; 128(5): 686-698.

  • 32

    Virijevic M, Karan-Djurasevic T, Marjanovic I, et al. Somatic mutations of isocitrate dehydrogenases 1 and 2 are prognostic and follow-up markers in patients with acute myeloid leukaemia with normal karyotype. Radiol Oncol. 2016; 50(4): 385–393.

  • 33

    Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: A systematic review and meta-analysis. Clin Cancer Res. 2017; 23(15): 4511–4522.

  • 34

    Chou WC, Lei WC, Ko BS, et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 2011; 25(2): 246–253.

  • 35

    Lin CC, Hou HA, Chou WC, et al. IDH mutations are closely associated with mutations of DNMT3A, ASXL1 and SRSF2 in patients with myelodysplastic syndromes and are stable during disease evolution. Am J Hematol. 2014; 89(2): 137–144.

  • 36

    Emadi A, Faramand R, Carter-Cooper B, et al. Presence of isocitrate dehydrogenase mutations may predict clinical response to hypomethylating agents in patients with acute myeloid leukemia. Am J Hematol. 2015; 90(5): E77–79.

  • 37

    Jin J, Hu C, Yu M, et al. Prognostic value of isocitrate dehydrogenase mutations in myelodysplastic syndromes: a retrospective cohort study and meta-analysis. PLoS One. 2014; 9(6): e100206.

  • 38

    DiNardo CD, Patel KP, Garcia-Manero G. et al. Lack of association of IDH1, IDH2 and DNMT3A mutations with outcome in older patients with acute myeloid leukemia treated with hypomethylating agents. Leuk Lymphoma 2014; 55(8): 1925–1929.

  • 39

    Kernytsky A, Wang F, Hansen E, et al. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood 2015; 125(2): 296–303.

  • 40

    Stein EM, DiNardo CD, Pollyea DA. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017; 130(6): 722–731.

  • 41

    DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018; 378(25): 2386–2398.

  • 42

    Harding JJ, Lowery MA, Shih AH, et al. Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition. Cancer Discov. 2018; 8(12): 1540–1547.

  • 43

    Intlekofer AM, Shih AH, Wang B, et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 2018; 559(7712): 125–129.

  • 44

    Quek L, David MD, Kennedy A, et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat Med. 2018; 24(8): 1167–1177.

  • 45

    Nassereddine S, Lap CJ, Tabbara IA. Evaluating ivosidenib for the treatment of relapsed/refractory AML: design, development, and place in therapy. Onco Targets Ther. 2019; 12: 303–308.

  • 46

    DiNardo CD, Pratz KW, Letai A, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018; 19(2): 216–228.

  • 47

    Mingay M, Chaturvedi A, Bilenky M, et al. Vitamin C-induced epigenomic remodelling in IDH1 mutant acute myeloid leukaemia. Leukemia 2018; 32(1): 11–20.