Ebben a munkában bemutatásra kerül, hogy a tünetes myeloma multiplex (MM) betegség fokozatos kialakulásának lépéseiben számos hasonló genetikai és epigenetikai változás érhető tetten, mint a klinikai diagnózissal nem bíró, tehát egészséges, vagyis sikeres öregedés során. Az életkorral járó változásokra részben mint oki tényezőkre is tekinthetünk a gammopátiák progressziójában, vagy tekinthetjük őket többé-kevésbé független, párhuzamos sejtszintű történéseknek, melyek gyorsíthatják az MM kifejlődését. Az átfedő jelenségek miatt arra a következtetésre juthatunk, hogy indokolt oki tényezőként gondolni az öregedésre a MM progressziója/transzformációja során, hozzátéve, hogy az öregedési folyamatokra különösen érzékenyek a memória B-sejtek. A sejtszintű öregedés folyamatainak figyelembevétele az MGUS–MM-átmenetben ugyanakkor jó magyarázatot ad a myeloma diagnózisakor észlelt nagyszámú párhuzamos daganatsejtes klón jelenlétére. A sejtszintű öregedés ellen ható kutatások követése a klinikusok és a betegek számára is ajánlott, mert bővülő ismereteink körültekintő alkalmazásai mindinkább beépülhetnek a megelőzésbe, a progresszió lassításába, sőt akár a terápia részévé válhatnak.
Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clinic Proc 2003; 78(1): 21–33. Epub 2003/01/17. https://doi.org/10.4065/78.1.21. PubMed PMID: 12528874.
Cowan AJ, Allen C, Barac A, Basaleem H, Bensenor I, Curado MP, et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016. JAMA Oncol 2018; 4(9): 1221–1227. https://doi.org/10.1001/jamaoncol.2018.2128. PubMed PMID: 29800065.
Barwick BG, Gupta VA, Vertino PM, Boise LH. Cell of origin and genetic alterations in the pathogenesis of multiple myeloma. Front Immunol 2019; 10: 1121. https://doi.org/10.3389/fimmu.2019.01121. PubMed PMID: 31231360.
Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol 2020; 95(5): 548–567. Epub 2020/03/27. https://doi.org/10.1002/ajh.25791. PubMed PMID: 32212178.
Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR, et al. Prevalence of monoclonal gammopathy of undetermined significance. The New Engl J Med 2006; 354(13): 1362–1369. Epub 2006/03/31. https://doi.org/10.1056/NEJMoa054494. PubMed PMID: 16571879.
Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. The New Engl J Med 2002; 346(8): 564–569. Epub 2002/02/22. https://doi.org/10.1056/NEJMoa01133202. PubMed PMID: 11856795.
Therneau TM, Kyle RA, Melton LJ, 3rd, Larson DR, Benson JT, Colby CL, et al. Incidence of monoclonal gammopathy of undetermined significance and estimation of duration before first clinical recognition. Mayo Clinic Proc 2012; 87(11): 1071–1079. Epub 2012/08/14. https://doi.org/10.1016/j.mayocp.2012.06.014. PubMed PMID: 22883742; PubMed Central PMCID: PMCPMC3541934.
Alzrigat M, Párraga AA, Jernberg-Wiklund H. Epigenetics in multiple myeloma: from mechanisms to therapy. Semin Cancer Biol 2018; 51: 101–115. https://doi.org/10.1016/j.semcancer.2017.09.007.
Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet 2019; 51(4): 611–617. Epub 2019/03/29. https://doi.org/10.1038/s41588-019-0373-3. PubMed PMID: 30926969.
Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6(8): 597–610. https://doi.org/10.1038/nrg1655.
Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics 2017; 12(6): 416–432. Epub 2017/03/30. https://doi.org/10.1080/15592294.2017.1311434. PubMed PMID: 28358281.
Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of senescent cells in the bone microenvironment. J bone mineral Res : official J Am Soc Bone Mineral Res 2016; 31(11): 1920–1929. Epub 2016/10/25. https://doi.org/10.1002/jbmr.2892. PubMed PMID: 27341653; PubMed Central PMCID: PMCPMC5289710.
Funayama R, Ishikawa F. Cellular senescence and chromatin structure. Chromosoma 2007; 116(5): 431–440. https://doi.org/10.1007/s00412-007-0115-7.
Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev 2020; 34(23–24): 1565–1576. Epub 2020/12/03. https://doi.org/10.1101/gad.343129.120. PubMed PMID: 33262144; PubMed Central PMCID: PMCPMC7706700.
Urban VS, Cegledi A, Mikala G. Multiple myeloma, a quintessential malignant disease of aging: a geroscience perspective on pathogenesis and treatment. Geroscience 2022: 1–20. Epub 2022/12/13. https://doi.org/10.1007/s11357-022-00698-x. PubMed PMID: 36508077; PubMed Central PMCID: PMCPMC9742673.
Duarte LF, Young ARJ, Wang Z, Wu H-A, Panda T, Kou Y, et al. Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat Commun 2014; 5: 5210–. https://doi.org/10.1038/ncomms6210. PubMed PMID: 25394905.
Tvardovskiy A, Schwämmle V, Kempf SJ, Rogowska-Wrzesinska A, Jensen ON. Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape. Nucleic Acids Res 2017; 45(16): 9272–9289. Epub 2017/09/22. https://doi.org/10.1093/nar/gkx696. PubMed PMID: 28934504; PubMed Central PMCID: PMCPMC5766163.
Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol J-H, et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 2014; 28(4): 396–408. https://doi.org/10.1101/gad.233221.113. PubMed PMID: 24532716.
Pawlyn C, Kaiser MF, Heuck C, Melchor L, Wardell CP, Murison A, et al. The spectrum and clinical impact of epigenetic modifier mutations in myeloma. Clin Cancer Res 2016; 22(23): 5783–5794. Epub 2016/05/27. https://doi.org/10.1158/1078-0432.CCR-15-1790. PubMed PMID: 27235425.
Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta 2009; 1790(9): 863–868. Epub 2009/01/27. https://doi.org/10.1016/j.bbagen.2008.12.006. PubMed PMID: 19168116.
Füllgrabe J, Kavanagh E, Joseph B. Histone onco-modifications. Oncogene 2011; 30(31): 3391–3403. https://doi.org/10.1038/onc.2011.121.
Cea M, Cagnetta A, Adamia S, Acharya C, Tai Y-T, Fulciniti M, et al. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood 2016; 127(9): 1138–1150. Epub 2015/12/16. https://doi.org/10.1182/blood-2015-06-649970. PubMed PMID: 26675349.
Allegra A, Innao V, Polito F, Oteri R, Alibrandi A, Allegra AG, et al. SIRT2 and SIRT3 expression correlates with redox imbalance and advanced clinical stage in patients with multiple myeloma. Clin Biochem 2021; 93: 42–49. Epub 2021/04/17. https://doi.org/10.1016/j.clinbiochem.2021.04.002. PubMed PMID: 33861984.
Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 2016; 8: 61–. https://doi.org/10.1186/s13148-016-0224-3. PubMed PMID: 27226812.
Prakash K, Fournier D. Histone code and higher-order chromatin folding: a hypothesis. Genom Comput Biol 2017; 3(2): e41. Epub 2017/01/30. https://doi.org/10.18547/gcb.2017.vol3.iss2.e41. PubMed PMID: 31245531.
Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in Cancer treatments. BMC Cancer 2022; 22(1): 105–. https://doi.org/10.1186/s12885-022-09211-1. PubMed PMID: 35078427.
Watroba M, Szukiewicz D. Sirtuins at the service of healthy longevity. Front Physiol 2021; 12: 724506–. https://doi.org/10.3389/fphys.2021.724506. PubMed PMID: 34899370.
Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 2019; 54(1): 61–83. Epub 2019/03/01. https://doi.org/10.1080/10409238.2019.1570075. PubMed PMID: 30822165.
Stead ER, Bjedov I. Balancing DNA repair to prevent ageing and cancer. Exp Cell Res 2021; 405(2): 112679–. Epub 2021/06/05. https://doi.org/10.1016/j.yexcr.2021.112679. PubMed PMID: 34102225.
Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature 1980; 287(5782): 560–561. https://doi.org/10.1038/287560a0.
Kakiuchi N, Ogawa S. Clonal expansion in non-cancer tissues. Nat Rev Cancer 2021; 21(4): 239–256. https://doi.org/10.1038/s41568-021-00335-3.
Boothby MR, Hodges E, Thomas JW. Molecular regulation of peripheral B cells and their progeny in immunity. Genes Dev 2019; 33(1–2): 26–48. https://doi.org/10.1101/gad.320192.118. PubMed PMID: 30602439.
Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics 2014; 6(4): 427–443. Epub 2014/10/22. https://doi.org/10.2217/epi.14.35. PubMed PMID: 25333851.
Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun 2015; 6: 6997. Epub 2015/04/24. https://doi.org/10.1038/ncomms7997. PubMed PMID: 25904160; PubMed Central PMCID: PMCPMC4568299.
Sheppard EC, Morrish RB, Dillon MJ, Leyland R, Chahwan R. Epigenomic modifications mediating antibody maturation. Front Immunol 2018; 9: 355–. https://doi.org/10.3389/fimmu.2018.00355. PubMed PMID: 29535729.
Kalff A, Spencer A. The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: prognostic implications and current clinical strategies. Blood Cancer J 2012; 2(9): e89–. https://doi.org/10.1038/bcj.2012.37. PubMed PMID: 22961061.
Neben K, Jauch A, Hielscher T, Hillengass J, Lehners N, Seckinger A, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol : official J Am Soc Clin Oncol 2013; 31(34): 4325–4332. Epub 2013/10/23. https://doi.org/10.1200/jco.2012.48.4923. PubMed PMID: 24145347.
Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. The New Engl J Med 2014; 371(26): 2488–2498. Epub 2014/11/27. https://doi.org/10.1056/NEJMoa1408617. PubMed PMID: 25426837; PubMed Central PMCID: PMCPMC4306669.
Silver AJ, Jaiswal S. Clonal hematopoiesis: pre-cancer PLUS. Adv Cancer Res 2019; 141: 85–128. Epub 2019/01/30. https://doi.org/10.1016/bs.acr.2018.12.003. PubMed PMID: 30691686.
Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 2016; 7: 12484. Epub 2016/08/23. https://doi.org/10.1038/ncomms12484. PubMed PMID: 27546487; PubMed Central PMCID: PMCPMC4996934.
Maclachlan K, Diamond B, Maura F, Hillengass J, Turesson I, Landgren CO, et al. Second malignancies in multiple myeloma; emerging patterns and future directions. Best Pract Res Clin Haematol 2020; 33(1): 101144. Epub 2020/03/07. https://doi.org/10.1016/j.beha.2020.101144. PubMed PMID: 32139010; PubMed Central PMCID: PMCPMC7544243.
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288(5): 518–536. Epub 2020/07/21. https://doi.org/10.1111/joim.13141. PubMed PMID: 32686219; PubMed Central PMCID: PMCPMC7405395.