View More View Less
  • 1 Department of Geology, University of Pécs, H-7624, Pécs, Ifjúság útja 6, Hungary
  • | 2 Upstream Laboratories, EP IFA, MOL Plc, H-1039, Budapest, Batthyány utca 45, Hungary, eknapp@mol.hu
Restricted access

Abstract

Risk assessments and remediation plans of hydrocarbon-contaminated sites usually have been managed based on total petroleum hydrocarbon (TPH) content. Gasoline is one of the most mobile pollution agents, which consist mainly of light hydrocarbons. Measuring of TPH does not give enough information about the individual compounds. Another problem is using solvents such as n-hexane for extraction. In some cases we would like to know about the hydrocarbon-adsorption properties of contaminated samples. The article describes a laboratory model for hydrocarbon contamination modeling, and measuring hydrocarbon sorption properties. For modeling the authors have chosen gasoline type hydrocarbon, homogeneous sand and clay samples from the Kiscell Clay Formation. Results of the modeling indicate that the referenced ATD-GC/MS method can be a very effective tool in the risk assessment of hydrocarbon-contaminated areas.

  • A.O. Barakat Y. Qian M. Kim M.C. Kennicutt 2001 Chemical characterization of naturally weathered oil residues in arid terrestial environment in Al-Alamein, Egypt Environment International 27 291 310.

    • Search Google Scholar
    • Export Citation
  • C.D. Cunha S.G.F. Leite 2000 Gasoline biodegradation in different soil microcosms Brazilian Journal of Microbiology 31 45 49.

  • R.B. Donahue S.L. Barbour J.V. Headley 1999 Diffusion and adsorption of benzene in Regina clay Can. Geotech. J./Rev. can. geotech. 36/3 430 442.

    • Search Google Scholar
    • Export Citation
  • S. Gitipour A. Baghvand S. Givehchi 2006 Adsorption and permeability of contaminated clay soils to hydrocarbons Pakistan Journal of Biological Sciences 9/3 336 340.

    • Search Google Scholar
    • Export Citation
  • K.U. Goss 1994 Adsorption of organic vapors on polar mineral surfaces and on a bulk water surface: development of an empirical predictive model Environmental Science and Technology 28 640 645.

    • Search Google Scholar
    • Export Citation
  • K.U. Goss 1996 Adsorption of VOCs from the gas phase to different minerals and a mineral mixture Environmental Science and Technology 30 2135 2142.

    • Search Google Scholar
    • Export Citation
  • S.A. Harris M.J. Whiticar M.K. Eek 1999 Molecular and isotopic analysis of oils by solid phase microextraction of gasoline range hydrocarbons Organic Geochemistry 30 721 737.

    • Search Google Scholar
    • Export Citation
  • R. Hinedi C.T. Johnston C. Erickson 1993 Chemisorption of benzene on Cu-montmorillonite as characterized by FTIR and 13C MAS NMR Clays and Clay Minerals 41 87 94.

    • Search Google Scholar
    • Export Citation
  • Kalmár J. , G. Szurkos, P. Kovács-Pálffy 2003: Üledékképzödés és közettéválás a dél-budai Kiscelli Agyag Formációban, a IV. sz. metró nyomvonalán mélyült fúrásokban (Sedimentation and lithification in the Kiscell Clay Formation from South Buda, in the boreholes deepened in the pathway of the (projected) IVth Metro Line). — MÁFI Évi Jelentése, 20002001, pp. 107119.

    • Search Google Scholar
    • Export Citation
  • M.A. Lahvis A.L. Baehr R.J. Baker 1999 Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions Water Resources Research 35/3 753 765.

    • Search Google Scholar
    • Export Citation
  • Y. Li G. Gupta 1994 Adsorption of hydrocarbons by clay minerals from gasoline Journal of hazardous materials 38/ 105 112.

  • Lo I.M.C. 1992: Development and evaluation of clay-liner materials for hazardous waste sites. Ph.D. Dissertation, The University of Texas at Austin. — In: Lake, C.B., R.K. Rowe 2005: A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites. — Geotextiles and Geomembrans, 23, pp. 323347.

    • Search Google Scholar
    • Export Citation
  • S. Melnitchenko J.G. Thompson C. Volzone J. Ortiga 2000 Selective gas adsorption by metal exchanged amorphous kaolinite derivative Applied Clay Science 17 35 53.

    • Search Google Scholar
    • Export Citation
  • F.A. Morissey M.E. Grismer 1999 Kinetics of volatile organic compound sorption/desorption on clay minerals Journal of Contaminant Hydrology 36 291 312.

    • Search Google Scholar
    • Export Citation
  • MSZ-08-0215-78: Hungarian standard for determination of the cation adsorption capacity of the soil, Modified Mehlich technique.

  • M. Obermajer K.G. Osadetz M.G. Fowler L.R. Snowdon 2000 Light hydrocarbon (gasoline range) parameter refinement of biomarker-based oil-oil correlation studies: An example from Willistone Basin Organic Geochemistry 31 959 976.

    • Search Google Scholar
    • Export Citation
  • J.R. Odermatt 1993 Natural chromatographic separation of benzene, toluene, ethylbenzene and xylenes (BTEX compounds) in a gasoline contaminated ground water aquifer Organic Geochemistry 21/10/11 1141 1150.

    • Search Google Scholar
    • Export Citation
  • K.R. O. de Pereira R.A. Hanna M.M.G. Ramos Vianna C.A. Pinto M.G.F. Rodrigues F.R. Valenzuela Diaz 2005 Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons Material Researches 8/1 77 80.

    • Search Google Scholar
    • Export Citation
  • M.A. Rodriguez J. Rubio M.J. Liso J.L. Oteo 1997 Application of inverse gas chromatography to the study of the surface properties of slates Clays and Clay Minerals 45 670 680.

    • Search Google Scholar
    • Export Citation
  • B.J. Smallwood R.P. Philp J.D. Allen 2002 Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry Organic Geochemistry 33/2 149 159.

    • Search Google Scholar
    • Export Citation
  • Souza Santos, P. 1992: Science and Technology of Clays. 2rdsd. São Paulo, Edgar Blucher, 1992, 3 v. (in Portuguese). — In: Ramos Vianna, M.M.G., J.H.R. Franco, C. A. Pinto, F.R. Valenzuela Diaz, P.M. Büchler 2004: Sorption of oil pollution by organoclays and a coal/mineral complex. — Brazilian Journal of Chemical Engineering, 21/2, pp. 239245.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K.R., H.S. Fogler 1990: Use of inorgano-organo-clays in the removal of priority pollutants for industrial wasteaters: Structural aspects 38, pp. 277286. — In: Lake, C.B., R.K. Rowe 2005: A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites. — Geotextiles and Geomembrans, 23, pp. 323347.

    • Search Google Scholar
    • Export Citation
  • J. Tóth M. Kállai 2006 Gazolin szennyezödés laboratóriumi modellezése Földtani kutatás 58/3 1 12 (Laboratory modelling of gasoline contamination).

    • Search Google Scholar
    • Export Citation
  • J. Tóth E. Török 2006 Geochemistry-based modelling of hydrocarbon contamination European Geologist 22 32 35.

  • C. Volzone J.G. Thompson A. Melnitchenko J. Ortiga S.P. Palethorpe 1999 Selective gas adsorption by amorphous clay-mineral derivatives Clays and Clay Minerals 47 647 657.

    • Search Google Scholar
    • Export Citation
  • H. Wehner M. Teschner K. Bosecker 1988 Bakterieller Abbau als mögliche Ursache für die Entstehung von Schwerölen Erdöl und Kohle — Erdgas — Petrochemie vereinigt mit Brennstoffchemie 41/3 107 112.

    • Search Google Scholar
    • Export Citation
  • M.J. Whiticar L.R. Snowdon 1999 Geochemical characterization of selected Western Canada oils by C5–C8 Compound Specific Isotope Correlation (CSIC) Organic Geochemistry 30/9 1127 1161.

    • Search Google Scholar
    • Export Citation
  • Winters, J.C., J.A. Williams 1969: Microbiological alteration of crude oil in the reservoir. — In: Symposium on petroleum transformation in geologic environments. Div. Pet. Chem. Am. Chem. Soc. New York, Sept. pp. 712, Paper PETR 86, E22–E31.

    • Search Google Scholar
    • Export Citation
  • S. Xu G. Sheng S.A. Boyd 1997 Use of organoclays in pollution abatement Advances in Agronomy 59 25 62.

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2020  
Scimago
H-index
24
Scimago
Journal Rank
0,253
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
59/33=1,8
Scopus
Cite Score Rank
Geology 134/251 (Q3)
Scopus
SNIP
0,679
Scopus
Cites
146
Scopus
Documents
4
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance
Rate
36%

 

2019  
Scimago
H-index
22
Scimago
Journal Rank
0,313
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
43/33=1,3
Scopus
Cite Score Rank
Geology 151/235(Q3)
Scopus
SNIP
0,593
Scopus
Cites
106
Scopus
Documents
7
Acceptance
Rate
47%

 

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Publication
Programme
2021 Volume 64
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 4 0 0
Aug 2021 2 0 0
Sep 2021 0 0 0
Oct 2021 2 0 0
Nov 2021 1 0 0
Dec 2021 0 0 0