Among the periodic system's elements, mercury (Hg) is most liable to dispersion and, simultaneously, most liable to secondary enrichment. Consequently, mercury enrichments can occur as a result of a number of geologic as well as anthropogenic processes. If the geologic processes cease, quite extended dispersion halos can form around a former accumulation center.
Hydrothermal mineralization is a typical process giving rise to mercury concentration. As a result, regional mercury impacts can occur in the floodplains of rivers flowing from the mining and heavy industrial regions of Transylvania and Slovakia. Elsewhere, mercury anomalies detectable at the intermediate scale (1:50,000) can be found in the Zemplén and Mátra Mountains and, subordinately, in the Börzsöny Mountains. Typically mercury anomalies develop above major structural lineaments as well, unless they are buried under thick young sediments. A remarkable example is the deep fault separating the Pilis and Visegrád Mountains. Another group of Hg anomalies is caused by well-known mercury contamination sources (Kazincbarcika, Balatonfûzfő), which are truly local: they cannot be detected at the scale of the given study.
Bertalan A. Bartha 1999 Analytical background of Carlin-type gold prospection in Hungary Geologica Hungarica Ser. Geol. 24 169 178.
Csongrádi, J. 1984: Epi-teletermális Hg-Sb indikáció az Asztag-kő-Üstök-fő környékén (Epitelethermal Hg-Sb indication in the surroundings of Asztag-kő-Üstök-fő). — MÁFI Évi Jelentés 1982-ről, pp. 119–135. (In Hungarian.).
A. Darnley A. Björklund B. Bølviken N. Gustavson P.V. Koval J.A. Plant 1995 A global geochemical database for environmental and resource management. Recommendations for international geochemical mapping Final Report of IGCP-Project 259 Unesco Publishing Paris, France.
EU 2008 European Union Risk Assessment Report Diantimony Trioxide, CAS No: 1309-64-4, Einecs No: 215-175-0. Rapporteur: Sweden Office for official publications of the European Communities Luxembourg.
V.Z. Fursov 1977 Rtuty-indikator pri geokhimicheskikh poiskakh rudnykh mestorozhdenij Nedra Moscow 34 35 (Mercury indicator for the geochemical exploration of ore occurrences).
V.Z. Fursov 1983 Gazortutnij metod poiskov mestorozhdenij poleznykh iskopaemykh Nauka Moscow (Gaseous mercury method used for the exploration of the occurrences of workable mineral resources).
Fügedi, U., L. Ódor, É. Vető-Ákos 1995: Mercury related Environmental Problems in Hungary. — NATO Advanced Research Workshop: Regional and Global Mercury Cycles: Sources, Fluxes and Mass Balances, Abstracts, 10–14 July 1995, Novosibirsk, Russia, pp. 37–38.
U. Fügedi A. Moyzes L. Ódor Vető-Ákos 1996 Case studies on mercury related environmental problems in Hungary W. Baeyens R. Ebinghaus O. Vasiliev Regional and Global Mercury Cycles: Sources, Fluxes and Mass Balances Kluwer Academic Publishers Dordrecht, The Netherlands 491 498.
U. Fügedi 2004 Geokémiai háttér és nehézfémszennyezés Gyöngyösoroszi térségében Földtani Közlöny 134/ 2 291 301 (Geochemical background and heavy metal pollution in the environs of Gyöngyösoroszi).
U. Fügedi I. Horváth L. Ódor 2006 Geokémiai háttér és a természetes eredetû környezeti terhelés Magyarország felszíni képződményeiben G. Szendrei Magyarország környezetgeokémiai állapota MTA Budapest 11 21 (The geochemical background and natural environmental impact in the near-surface geological formations of Hungary).
U. Fügedi I. Horváth L. Ódor 2007 Geokémiai háttérértékek Magyarország hegyvidéki területein Földtani Közlöny 137/ 1 63 74 (Geochemical background values in the mountain regions of Hungary).
Gedeon, A. 1964: Geokémiai mérések a Mátrahegységben, 1962 (Geochemical measurements in the Mátra Mountains, 1962). — MÁFI Évi Jelentése 1962-ről, pp. 337–346. (In Hungarian.).
Gedeon, A. B., Kovács B., A. Vidacs 1959: Hidrokémiai és metallometriai felvételek a Mátrában ([Hydrochemical and metallometric surveys in the Mátra, 1956–1958.). — MÁELGI Jelentése 1958-ról. (In Hungarian.).
J. Halamic S. Miko 2009 Geochemical Atlas of the Republic of Croatia HGI Zagreb.
A. Hartikainen I. Horváth L. Ódor L. Kovács J. Csongrádi 1992 Regional multimedia geochemical exploration for Au in the Tokaj Mountains, northeast Hungary Applied Geochemistry 7 533 547.
Horvath, E., G. Jordan, U. Fugedi, A. Bartha, L. Kuti, G. Heltai, J. Kalmár, I. Waldmann, I. Napradean, G. Damian 2009: Risk Assessment of Heavy Metals in Abandoned Mine Lands as Significant Contamination Problem in Romania. — Geophysical Research, Abstracts Vol. 11, EGU2009–0. EGU General Assembly.
I.G. Magak'jan 1974 Metallogenija Nedra Moscow (Metallogeny).
Mach, C.E., S. Peterson, N.S. Bloom 1996: Mercury contamination and speciation in the Carson River and Lahontan Reservoir. — In: Ebinghaus, R., G. Petersen, U. von Tümpling 1996: 4th International Conference on Mercury as a Global Pollutant August 4–8, 1996. Book of Abstracts, p. 142.
L. Ódor I. Horváth U. Fügedi 1997 Low-density geochemical mapping in Hungary Journal of Geochemical Exploration 60 55 66.
Ódor, L., I. Horváth, U. Fügedi 1998: Magyarország geokémiai atlasza (The geochemical atlas of Hungary). — http://www.mafi.hu/geokem/Fomenu.html. (In Hungarian.).
L. Ódor R.B. Wanty I. Horváth U. Fügedi 1999 Environmental signatures of mineral deposits and areas of regional hydrothermal alteration in Northeastern Hungary Geologica Hungarica, Ser. Geol. 24 107 129.
P. Li X. Feng L. Shang G. Qiu B. Meng P. Liang H. Zhang 2008 Mercury pollution from artisanal mercury mining in Tongren, Guizhou, China Applied Geochemistry 23/ 8 2055 2064.
C. Reimann R.G. Garrett 2005 Geochemical background — concept and reality Sci. Total Environ. 350 12 27.
C. Reimann R.G. Garrett P. Filzmoser 2005 Background and threshold — critical comparison of methods of determination Sci. Total Environ. 346 1 16.
J.F. Risher 2003 Elemental mercury and inorganic mercury compounds: human health aspects World Health Organisation Geneva.
R. Salminen A. Demetriades S. Reeder 2005 Introduction R. Salminen Geochemical atlas of Europe. Part 1. Background information, methodology and maps Geological Survey of Finland Espoo.
H. Sandström S. Reeder A. Bartha M. Birke F. Berge B. Davidsen A. Grimstvedt M.-L. Hagel-Brunnström W. Kantor E. Kallio G. Klaver P. Lucivjansky D. Mackovych H. Mjartanova B. van Os P. Paslawski E. Popiolek U. Siewers Zs. Varga-Barna E. van Vilsteren M. Ødegård 2005 Sample Preparation and Analysis R. Salminen Geochemical atlas of Europe. Part 1. Background information, methodology and maps Geological Survey of Finland Espoo.
Saukov, A.A. 1946: Geokhimija rtuti (The geochemistry of mercury). — Moscow, Tr. AN SzSzSzR, Min. Geokh. Ser. 17. (In Russian.).
Sergeev, E.A. 1957: Metodika rtutometricheskikh issledovanij. — In: Geokhimicheszkie metody poiskov rudnykh mestorozhdenij v SSSR. (Methodology of mercury-metric investigations. In: Geochemical methods of the exploration of ore occurrences is SU). Moscow. p. 158–165. (In Russian.).
J.E. Smith A.M. Smith 1972 Minamata: a warning to the world Chatto & Windus London.
T.A. Weaver D.E. Broxton S.L. Bolivar S.H. Freeman 1983 The Geochemical Atlas of Alaska Geochemical Group, Earth and Space Sciences Division Los Alamos.
WebElements 2010: the periodic table on the web. (2010.04.07.) http://www.webelements.com/mercury/geology.html.
K.H. Wedepohl 1995 The composition of the continental crust Geochim. Cosmochim. Acta 59 1217 1232.
E.P. Yanin 1997 Mercury in Surroundings of the city of Temirtau, Central Kazakhstan Russian Academy of Sciences Moscow.
10/2000. (VI. 2.) KöM-EüM-FVM-KHVM együttes rendelet a felszín alatti víz és a földtani közeg minőségi védelméhez szükséges határértékekről (Unified Order No. 10/2000 of Environmental, Health, Agricultural and Land Development and Communication and Water Ministries about the limit valors required of the preservation of subsurface water and geological environment). — Hungarian Official Bulletin, June 2000, p. 2.
219/2004. (VII. 21.) Korm. rendelet a felszín alatti vizek védelméről (Unified Order No. 219/2004 of the Protection of the Ground Waters). — Hungarian Official Bulletin, 2004.