Authors:
Maciej Czarnacki Mass Spectrometry Laboratory, Institute of Pysics, Marie Curie-Sklodowska University, Lublin, Poland
Marie Curie-Sklodowska University, 20-031, Lublin, Poland, halas@tytan.umcs.lublin.pl

Search for other papers by Maciej Czarnacki in
Current site
Google Scholar
PubMed
Close
and
Stanislaw Halas Mass Spectrometry Laboratory, Institute of Pysics, Marie Curie-Sklodowska University, Lublin, Poland
Marie Curie-Sklodowska University, 20-031, Lublin, Poland, halas@tytan.umcs.lublin.pl

Search for other papers by Stanislaw Halas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We describe a simple electrostatic model of hydrated ions [M(H2O)n]+ (n = 3–18, M = Li, Mg, Ca, K) which enables to calculate ion vibration frequency of the ground state. In this model the considered ion with a reduced mass vibrates in quasispherical well formed by the ion-dipole attractive potential and repulsive valence potential, these simplifications allowed to solve one dimensional Schrödinger equation, whilst the calculated ground state was considered as one of triply degenerated state of the three dimensional motion of the ion vs. hydration shell. The reduced partition function ratios were calculated from the vibration frequencies using Urey's (1947) harmonic approximation formula.

The results obtained in this way are in good agreement with those obtained by much more laborious ab initio molecular orbital methods, like SCF Hartree-Fock, DFT, MP2, etc. Moreover, we were able to extend calculations to hydrated Li and K ions surrounded with two shells of water molecules. These results are the first estimations of the upper limit of isotope fractionation in water solutions, which are 99.3‰ for Li and only 2.5‰ for K isotopes.

  • A.I. Boldyrev J. Simson P. v. R. Schleyer 1993 Ab initio study of the electronic structures of lithium containing diatomic molecules and ions J. Chem. Phys. 99 8793 8804.

    • Search Google Scholar
    • Export Citation
  • T. Chacko D. Cole J. Horita 2001 Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems Rev. in Mineralogy & Geochemistry 43 1 81.

    • Search Google Scholar
    • Export Citation
  • S.A. Clough Y. Beers G.P. Klein S. L. Rothman 1973 Dipole moment of water from Stark measurements of H2O, HDO, and D2O J. Chem. Phys. 59 2254 2259.

    • Search Google Scholar
    • Export Citation
  • S. Halas P. Mackiewicz 2003 Radii of di-electron systems: H, He, Li+, Be+, B3+, C4+.a revision of the ionic radius for lithium Ann. Pol. Chem. Soc. 2 909 913.

    • Search Google Scholar
    • Export Citation
  • M. Humayun R.N. Clayton 1995 Precise determination of the isotopic composition of potassium: Application toterrestial rocks and lunar soils Geochim. Cosmochim. Acta 59 2115 2130.

    • Search Google Scholar
    • Export Citation
  • G.G. Malenkov 1962 Geometry of structures consisting of water molecules in hydrated crystals J. Struct. Chem. 3 206 226.

  • J.R. O'Neil 1986 Theoretical and experimental aspects of isotope fractionation Rev. in Mineralogy 16 1 40.

  • L. Pauling 1960 The Nature of the Chemical Bond Cornell Univ. Press Ithaca, New York.

  • J.R. Rustad W.H. Casey Q.-Z. Yin E.J. Bylaska A.R. Felmy S.A. Bogatko V.E. Jackson D.A. Dixon 2010 Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with carbonate minerals Geochim. Cosmochim. Acta 74 6301 6323.

    • Search Google Scholar
    • Export Citation
  • W. Salejda M.H. Tyc M. Just 2002 Algebraic methods for resolving of the Schrödinger equation Polish Scientific Publishers PWN Warsaw.

  • P.L. Silvestrelli M. Parrinello 1999 Water molecule dipole in gas and in the liquid phase Phys. Rev. Lett. 82 3308 3311.

  • G. Singer P.A. Rock 1972 Thermodynamics of lithium exchange reactions. III. Electrochemical studies of exchange between isotopic metals and aqueous ions J. Chem. Phys. 12 5556 5561.

    • Search Google Scholar
    • Export Citation
  • P.B. Tomascak 2004 Development in the understanding and application of lithium isotopes in the earth and planetary systems Rev. in Mineralogy & Geochemistry 55 153 195.

    • Search Google Scholar
    • Export Citation
  • Weast, R.C. Ed. 1980: CRC handbook of chemistry and physics, 61st ed. — CRC Press Inc. 19801981.

  • Urey, H.C. 1947: The thermodynamic properties of isotopic substances. — J. Chem. Soc., 1947 (London), pp. 562581.

  • K. Yamaji Y. Makita H. Watanabe H. Sonoda H. Kanoh T. Hirotsu O. Kenta 2001 Theoretical estimation of lithium isotopic reduced partition function ratio for lithium ions in aqueous solution J. Phys. Chem. A105 602 613.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2024  
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Geology)
SNIP 0.639
Scimago  
SJR index 0.225
SJR Q rank Q3

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2025 34 0 0
Feb 2025 27 0 0
Mar 2025 40 0 0
Apr 2025 16 0 0
May 2025 11 0 0
Jun 2025 19 0 0
Jul 2025 0 0 0