I have studied the Raman spectroscopic signatures of nanodiamonds from the Allende meteorite, in which some portions must be of presolar origin as indicated by the isotopic compositions of various trace elements. The spectra of the meteoritic nanodiamonds show a narrow peak at 1326 cm−1 and a broad band at 1590 cm−1. Compared to the intensities of these peaks, the background fluorescence is relatively high. A significant frequency shift from 1332 to 1326 cm−1, peak broadening, and appearance of a new peak at 1590 cm−1 might be due to shock effects during formation of the diamond grains. Such changes may have several origins: an increase in bond length, a change in the electron density function or charge transfer, or a combination of these factors. However, Raman spectroscopy alone does not allow distinguishing between a shock origin of the nanodiamonds and formation by a CVD process, as is favored by most workers.
R. Abbashian H. Zhu F. Clarke 2005 High pressure-high temperature growth of diamond crystals using split sphere apparatus Diamond and Related Materials 14 1916 1919.
V.D. Aleksandrov I.V. Sel'skaya 2002 Effect of synthesis conditions on the growth rate and structure of diamond films Inorganic Materials 39 455 458.
A. Anders E. Zinner 1998 Interstellar grains in primitive meteorites — Diamond, silicon carbide, and graphite Meteoritics 28 490 514.
C.C. Battaile D.J. Srolovitz J.E. Butler 1997 Molecular view of diamond CVD growth Journal of Electronic Materials 26 960 965.
Berg, T., E. Marosits, J. Maul, P. Nagel, U. Ott, F. Schertz, S. Schuppler, C. Sudek, G. Schönhense 2008: Quantum confinement observed in the X-ray absorption spectrum of size distributed meteoritic nanodiamonds. — Applied Physics Letters, 104, 064303.
P.R. Buerki S. Leutwyler 1991 Homogeneous nucleation of diamond powder by CO2-laser-driven gas-phase reactions Journal Applied Physics 69 37 39.
A.P. Boss S.I. Ipatov S.A. Keiser E.A.M. Harri T.A. Vanhala 2008 The Astrophysical Journal Letters 686 L119.
P. Chen F. Huang S. Yun 2006 Optical characterization of nanocarbon phases in detonation soot and shocked graphite Diamond Related Materials 15 1400 1404.
P. Chen F. Huang S. Yun 2004 Structural analysis of dynamically synthesized diamonds Material Research Bulletin 39 1589 1597.
J. Chen S.Z. Deng J. Chen Z.X. Yu N.S. Xu 1999 Graphitization of nanodiamond powder annealed in argon ambient Applied Physics Letters 74 3651 3654.
H.-K. Chung J.C. Sung 2001 The CVD growth of micro crystals of diamond Diamond and Related Materials 10 1584 1587.
T.L. Daulton D.D. Eisenhour T.J. Bernatowitz R.S. Lewis P.R. Buseck 1996 Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds Geochimica et Cosmochimica Acta 60 4853 4872.
A. Dunlop G. Jaskierowitz P.M. Ossi S. Della-Negra 2007 Transformation of graphite into nanodiamond following extreme electronic excitations Physical Review B 76 155403.
A.C. Ferrari J. Robertson 2004 Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond Philosophical Transactions Royal Society London A 362 2477 2512.
A.C. Ferrari J. Robertson 2001 Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond Physical Review, B. 63 121405 9.
Filik, J., N. Harvey, N.L. Allan, P.W. May, J.E.P. Dahl, S. Liu, R.M.K. Carlson 2006: Raman spectroscopy of nanocrystalline diamond: An ab initio approach. — Physical Review B, 74, 035423.
A. El Goresy P. Gillet M. Chen F. Künstler G. Graup V. Stähle 2001 In situ discovery of shockinduced graphite-diamond phase transition in gneisses from the Ries Crater, Germany American Mineralogist 86 611 621.
Greshake, A., T. Kenkmann, R.T. Scmitt, 2000: In situ Raman spectroscopy of diamond in the ureilite Hammadah Al Hamra 126. — 63rd Meteoritical Society Meeting, abs. #5049.
Gucsik, A., I. Simonia, K. Ninagawa, H. Nishido, M. Nakazato 2009: Cathododoluminescence study of meteoritic pre-solar nanodiamonds: An implication for origin of diamond particles in NGC 7027 planetary nebula. — Pacific Astronomical Union, Division of Planetary Sciences, 41st Annual Meeting.
Gucsik A. , U. Ott, E. Marosits, A. Karczemska, M. Kozanecki, M. Szurgot 2008a: Micro-Raman study of nanodiamonds from the Allende meteorite? — Proceedings for IAU Symposium 251: Organic Matter in Space. Cambridge University Press 251, pp. 335–338.
Gucsik A. , A.B. Verchovsky, U. Ott, E. Marosits, A. Karczemska, M. Kozanecki, M. Szurgot 2008b: Meteoritic nanodiamond: a micro-Raman spectroscopical overview? — 39th Lunar and Planetary Science Conference, Houston, U.S.A., abs. #1201.
Guo, Y., Z. Zheng, Y. Feng, Y. Li 2004: Effects of neutron irradiation on nanodiamond: Raman spectroscopy study. — Journal of Peking University (Science Edition), 40, 212 p.
Le Guillou, C., J.N. Rouzaud 2007: Nanodiamonds graphitization under temperature: Implications on their evolution during chondrites parent body metamorphism. — Lunar and Planetary Science Conference XXXVIII, abs. #1578.
Le Guillou, C., J.N. Rouzaud, F. Brunet 2006: Characterization of the carbon to diamond transition by X-Ray Diffraction, Raman Microspectroscopy, and High Resolution Transmission Electron Microscopy (HRTEM) A way to better constrain the formation of diamond in Space. — Lunar and Planetary Science Conference XXXVIII, abs. #1635.
J.F. Hansen M.F. Robey R.I. Klein A.R. Miles 2007 Experiment on the mass stripping of an interstellar cloud following shock passage The Astrophysical Journal 662 379 388.
G.R. Huss 1990 Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism Nature 347 159 162.
G.R. Huss R.S. Lewis 1995 Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type Geochimica et Cosmochimica Acta 59 115 160.
G.R. Huss R.S. Lewis 1994 Noble gases in presolar diamonds I: Three distinct components and their diamond origins Meteoritics 29 791 810.
A.P. Jones A.G.G.M. Tielens D.J. Hollenbach 1996 Grain shattering in shocks: The interstellar grain size distribution The Astrophysical Journal 469 740.
A.P. Jones A.G.G.M. Tielens D.J. Hollenbach C.F. McKee 1994 Grain destruction in shocks in the interstellar medium The Astrophysical Journal 433 797 810.
T.A. Karczemska 2010 Diamonds in meteorites-Raman mapping and cathodoluminescence studies Journal of Achievements in Materials and Manufacturing Engineering 43 94 107.
A. Karczemska T. Jakubowski M. Kozanecki I. Tszydel A. Jauss A. Gucsik 2009 Micro-Raman Spectroscopy of Diamonds from JaH 054 and Sahara 98505 Ureilites, Statistic Research AIP Proceedings of the International Conference 1163 59 74.
A. Karczemska M. Szurgot M. Kozanecki M.I. Szynkowska V. Ralchenko V.V. Danilenko P. Louda S. Mitura 2008 Extraterrestrial, terrestrial and laboratory diamonds — differences and similarities Diamond and Related Materials 17 1179 1185.
Kenkmann, T., U. Hornemann, D. Stöfler 2002: Transformation of graphite to diamond in shock experiments: A Raman study. — Lunar and Planetary Science Conference XXXIII, abs. #1052.
R.I. Klein Ch.F. McKee Ph. Colella 1994 On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds The Astrophysical Journal 420 213 236.
R.S. Lewis T. Ming J.F. Wacker E. Andres E. Steel 1987 Interstellar diamonds in meteorites Nature 326 160 162.
J. Lu Y.H. Wang J.B. Zang Y.N. Li 2007 Protective silicone coating for nanodiamonds using atomic layer deposition Applied Surface Science 253 3485 3488.
S. Mostefaoui A. El Goresy P. Hoppe Ph. Gillet U. Ott 2002 Mode of occurrence, textural settings and nitrogen-isotopic compositions of in situ diamonds and other carbon phases in the Bencubbin meteorite Earth and Planetary Science Letters 204 89 100.
Y. Mokuno A. Chayahara Y. Soda H. Yamada Y. Horino N. Fujimori 2006 High rate homoepitaxial growth of diamond by microwave plasma CVD with nitrogen addition Diamond and Related Materials 15 455 459.
Nasdala, L., D.C. Smith, R. Kaindl, M.A. Zieman 2004: Spectroscopic methods in mineralogy. — In: Beran, A., E. Libowitzky (eds.) Raman spectroscopy: Analytical perspectives in mineralogical research. EMU Notes In Mineralogy 6, Eötvös University Press, pp. 281–343.
J.A. Nuth III. J.E. Allen Jr 1992 Supernovae as sources of interstellar diamonds Astrophysics and Space Sciences 196 117 123.
M. Ozima M. Tatsumoto 1997 Radiation-induced diamond crystallization: origin of carbonados and its implications on meteorite nano-diamonds Geochimica et Cosmochimica Acta 61 369 376.
S. Richter U. Ott F. Begemann 1998 Tellurium in presolar diamonds as an indicator for rapid separation of supernova ejecta Nature 391 261.
S.S. Russel J.W. Arden C.T. Pillinger 1992 A new type of meteoritic diamond in the enstatite chondrite Abee Science 256 5054 206 209.
L. Sun J. Gong D. Zhu Z. Zhu S. He 2004 Diamond nanorods from carbon nanotubes Advanced Materials 16 1849 1853.
Z. Sun J.R. Shi B.K. Tay S.P. Lau 2000 UV raman characteristics of nanocrystalline diamond films with different grain size Diamond Related Materials 9 1979 1983.
A.G.G.M. Tielens C.G. Sseab D.J. Hollenbach C.F. McKee 1987 Shock processing of interstellar dust — Diamonds in the sky The Astrophysical Journal 319 L109 L113.
D. Zhang R.Q. Zhang 2005 Convergence in the evolution of nanodiamond Raman spectra with particle size: A theoretical investigation Journal of Physics and Chemistry B. 109 9006 9013.
E. Zinner 1998 Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites Annual Review of Earth and Planetary Sciences 26 147 188.
M. Yoshikawa Y. Mori H. Obata M. Maegawa G. Katagiri H. Ishida A. Ishitani 1995 Raman scattering from nanometer-sized diamond Applied Physics Letters 67 694 697.