View More View Less
  • 1 Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary
  • | 2 H-1121, Budapest, Konkoly-Thege út 15-17, Hungary
Restricted access

Abstract

I have studied the Raman spectroscopic signatures of nanodiamonds from the Allende meteorite, in which some portions must be of presolar origin as indicated by the isotopic compositions of various trace elements. The spectra of the meteoritic nanodiamonds show a narrow peak at 1326 cm−1 and a broad band at 1590 cm−1. Compared to the intensities of these peaks, the background fluorescence is relatively high. A significant frequency shift from 1332 to 1326 cm−1, peak broadening, and appearance of a new peak at 1590 cm−1 might be due to shock effects during formation of the diamond grains. Such changes may have several origins: an increase in bond length, a change in the electron density function or charge transfer, or a combination of these factors. However, Raman spectroscopy alone does not allow distinguishing between a shock origin of the nanodiamonds and formation by a CVD process, as is favored by most workers.

  • R. Abbashian H. Zhu F. Clarke 2005 High pressure-high temperature growth of diamond crystals using split sphere apparatus Diamond and Related Materials 14 1916 1919.

    • Search Google Scholar
    • Export Citation
  • V.D. Aleksandrov I.V. Sel'skaya 2002 Effect of synthesis conditions on the growth rate and structure of diamond films Inorganic Materials 39 455 458.

    • Search Google Scholar
    • Export Citation
  • A. Anders E. Zinner 1998 Interstellar grains in primitive meteorites — Diamond, silicon carbide, and graphite Meteoritics 28 490 514.

    • Search Google Scholar
    • Export Citation
  • C.C. Battaile D.J. Srolovitz J.E. Butler 1997 Molecular view of diamond CVD growth Journal of Electronic Materials 26 960 965.

  • Berg, T., E. Marosits, J. Maul, P. Nagel, U. Ott, F. Schertz, S. Schuppler, C. Sudek, G. Schönhense 2008: Quantum confinement observed in the X-ray absorption spectrum of size distributed meteoritic nanodiamonds. — Applied Physics Letters, 104, 064303.

    • Search Google Scholar
    • Export Citation
  • P.R. Buerki S. Leutwyler 1991 Homogeneous nucleation of diamond powder by CO2-laser-driven gas-phase reactions Journal Applied Physics 69 37 39.

    • Search Google Scholar
    • Export Citation
  • A.P. Boss S.I. Ipatov S.A. Keiser E.A.M. Harri T.A. Vanhala 2008 The Astrophysical Journal Letters 686 L119.

  • P. Chen F. Huang S. Yun 2006 Optical characterization of nanocarbon phases in detonation soot and shocked graphite Diamond Related Materials 15 1400 1404.

    • Search Google Scholar
    • Export Citation
  • P. Chen F. Huang S. Yun 2004 Structural analysis of dynamically synthesized diamonds Material Research Bulletin 39 1589 1597.

  • J. Chen S.Z. Deng J. Chen Z.X. Yu N.S. Xu 1999 Graphitization of nanodiamond powder annealed in argon ambient Applied Physics Letters 74 3651 3654.

    • Search Google Scholar
    • Export Citation
  • H.-K. Chung J.C. Sung 2001 The CVD growth of micro crystals of diamond Diamond and Related Materials 10 1584 1587.

  • T.L. Daulton D.D. Eisenhour T.J. Bernatowitz R.S. Lewis P.R. Buseck 1996 Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds Geochimica et Cosmochimica Acta 60 4853 4872.

    • Search Google Scholar
    • Export Citation
  • A. Dunlop G. Jaskierowitz P.M. Ossi S. Della-Negra 2007 Transformation of graphite into nanodiamond following extreme electronic excitations Physical Review B 76 155403.

    • Search Google Scholar
    • Export Citation
  • A.C. Ferrari J. Robertson 2004 Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond Philosophical Transactions Royal Society London A 362 2477 2512.

    • Search Google Scholar
    • Export Citation
  • A.C. Ferrari J. Robertson 2001 Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond Physical Review, B. 63 121405 9.

  • Filik, J., N. Harvey, N.L. Allan, P.W. May, J.E.P. Dahl, S. Liu, R.M.K. Carlson 2006: Raman spectroscopy of nanocrystalline diamond: An ab initio approach. — Physical Review B, 74, 035423.

    • Search Google Scholar
    • Export Citation
  • A. El Goresy P. Gillet M. Chen F. Künstler G. Graup V. Stähle 2001 In situ discovery of shockinduced graphite-diamond phase transition in gneisses from the Ries Crater, Germany American Mineralogist 86 611 621.

    • Search Google Scholar
    • Export Citation
  • Greshake, A., T. Kenkmann, R.T. Scmitt, 2000: In situ Raman spectroscopy of diamond in the ureilite Hammadah Al Hamra 126. — 63rd Meteoritical Society Meeting, abs. #5049.

    • Search Google Scholar
    • Export Citation
  • Gucsik, A., I. Simonia, K. Ninagawa, H. Nishido, M. Nakazato 2009: Cathododoluminescence study of meteoritic pre-solar nanodiamonds: An implication for origin of diamond particles in NGC 7027 planetary nebula. — Pacific Astronomical Union, Division of Planetary Sciences, 41st Annual Meeting.

    • Search Google Scholar
    • Export Citation
  • Gucsik A. , U. Ott, E. Marosits, A. Karczemska, M. Kozanecki, M. Szurgot 2008a: Micro-Raman study of nanodiamonds from the Allende meteorite? — Proceedings for IAU Symposium 251: Organic Matter in Space. Cambridge University Press 251, pp. 335338.

    • Search Google Scholar
    • Export Citation
  • Gucsik A. , A.B. Verchovsky, U. Ott, E. Marosits, A. Karczemska, M. Kozanecki, M. Szurgot 2008b: Meteoritic nanodiamond: a micro-Raman spectroscopical overview? — 39th Lunar and Planetary Science Conference, Houston, U.S.A., abs. #1201.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., Z. Zheng, Y. Feng, Y. Li 2004: Effects of neutron irradiation on nanodiamond: Raman spectroscopy study. — Journal of Peking University (Science Edition), 40, 212 p.

    • Search Google Scholar
    • Export Citation
  • Le Guillou, C., J.N. Rouzaud 2007: Nanodiamonds graphitization under temperature: Implications on their evolution during chondrites parent body metamorphism. — Lunar and Planetary Science Conference XXXVIII, abs. #1578.

    • Search Google Scholar
    • Export Citation
  • Le Guillou, C., J.N. Rouzaud, F. Brunet 2006: Characterization of the carbon to diamond transition by X-Ray Diffraction, Raman Microspectroscopy, and High Resolution Transmission Electron Microscopy (HRTEM) A way to better constrain the formation of diamond in Space. — Lunar and Planetary Science Conference XXXVIII, abs. #1635.

    • Search Google Scholar
    • Export Citation
  • J.F. Hansen M.F. Robey R.I. Klein A.R. Miles 2007 Experiment on the mass stripping of an interstellar cloud following shock passage The Astrophysical Journal 662 379 388.

    • Search Google Scholar
    • Export Citation
  • G.R. Huss 1990 Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism Nature 347 159 162.

  • G.R. Huss R.S. Lewis 1995 Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type Geochimica et Cosmochimica Acta 59 115 160.

    • Search Google Scholar
    • Export Citation
  • G.R. Huss R.S. Lewis 1994 Noble gases in presolar diamonds I: Three distinct components and their diamond origins Meteoritics 29 791 810.

    • Search Google Scholar
    • Export Citation
  • A.P. Jones A.G.G.M. Tielens D.J. Hollenbach 1996 Grain shattering in shocks: The interstellar grain size distribution The Astrophysical Journal 469 740.

    • Search Google Scholar
    • Export Citation
  • A.P. Jones A.G.G.M. Tielens D.J. Hollenbach C.F. McKee 1994 Grain destruction in shocks in the interstellar medium The Astrophysical Journal 433 797 810.

    • Search Google Scholar
    • Export Citation
  • T.A. Karczemska 2010 Diamonds in meteorites-Raman mapping and cathodoluminescence studies Journal of Achievements in Materials and Manufacturing Engineering 43 94 107.

    • Search Google Scholar
    • Export Citation
  • A. Karczemska T. Jakubowski M. Kozanecki I. Tszydel A. Jauss A. Gucsik 2009 Micro-Raman Spectroscopy of Diamonds from JaH 054 and Sahara 98505 Ureilites, Statistic Research AIP Proceedings of the International Conference 1163 59 74.

    • Search Google Scholar
    • Export Citation
  • A. Karczemska M. Szurgot M. Kozanecki M.I. Szynkowska V. Ralchenko V.V. Danilenko P. Louda S. Mitura 2008 Extraterrestrial, terrestrial and laboratory diamonds — differences and similarities Diamond and Related Materials 17 1179 1185.

    • Search Google Scholar
    • Export Citation
  • Kenkmann, T., U. Hornemann, D. Stöfler 2002: Transformation of graphite to diamond in shock experiments: A Raman study. — Lunar and Planetary Science Conference XXXIII, abs. #1052.

    • Search Google Scholar
    • Export Citation
  • R.I. Klein Ch.F. McKee Ph. Colella 1994 On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds The Astrophysical Journal 420 213 236.

    • Search Google Scholar
    • Export Citation
  • R.S. Lewis T. Ming J.F. Wacker E. Andres E. Steel 1987 Interstellar diamonds in meteorites Nature 326 160 162.

  • J. Lu Y.H. Wang J.B. Zang Y.N. Li 2007 Protective silicone coating for nanodiamonds using atomic layer deposition Applied Surface Science 253 3485 3488.

    • Search Google Scholar
    • Export Citation
  • S. Mostefaoui A. El Goresy P. Hoppe Ph. Gillet U. Ott 2002 Mode of occurrence, textural settings and nitrogen-isotopic compositions of in situ diamonds and other carbon phases in the Bencubbin meteorite Earth and Planetary Science Letters 204 89 100.

    • Search Google Scholar
    • Export Citation
  • Y. Mokuno A. Chayahara Y. Soda H. Yamada Y. Horino N. Fujimori 2006 High rate homoepitaxial growth of diamond by microwave plasma CVD with nitrogen addition Diamond and Related Materials 15 455 459.

    • Search Google Scholar
    • Export Citation
  • Nasdala, L., D.C. Smith, R. Kaindl, M.A. Zieman 2004: Spectroscopic methods in mineralogy. — In: Beran, A., E. Libowitzky (eds.) Raman spectroscopy: Analytical perspectives in mineralogical research. EMU Notes In Mineralogy 6, Eötvös University Press, pp. 281343.

    • Search Google Scholar
    • Export Citation
  • J.A. Nuth III. J.E. Allen Jr 1992 Supernovae as sources of interstellar diamonds Astrophysics and Space Sciences 196 117 123.

  • M. Ozima M. Tatsumoto 1997 Radiation-induced diamond crystallization: origin of carbonados and its implications on meteorite nano-diamonds Geochimica et Cosmochimica Acta 61 369 376.

    • Search Google Scholar
    • Export Citation
  • S. Richter U. Ott F. Begemann 1998 Tellurium in presolar diamonds as an indicator for rapid separation of supernova ejecta Nature 391 261.

    • Search Google Scholar
    • Export Citation
  • S.S. Russel J.W. Arden C.T. Pillinger 1992 A new type of meteoritic diamond in the enstatite chondrite Abee Science 256 5054 206 209.

  • L. Sun J. Gong D. Zhu Z. Zhu S. He 2004 Diamond nanorods from carbon nanotubes Advanced Materials 16 1849 1853.

  • Z. Sun J.R. Shi B.K. Tay S.P. Lau 2000 UV raman characteristics of nanocrystalline diamond films with different grain size Diamond Related Materials 9 1979 1983.

    • Search Google Scholar
    • Export Citation
  • A.G.G.M. Tielens C.G. Sseab D.J. Hollenbach C.F. McKee 1987 Shock processing of interstellar dust — Diamonds in the sky The Astrophysical Journal 319 L109 L113.

    • Search Google Scholar
    • Export Citation
  • D. Zhang R.Q. Zhang 2005 Convergence in the evolution of nanodiamond Raman spectra with particle size: A theoretical investigation Journal of Physics and Chemistry B. 109 9006 9013.

    • Search Google Scholar
    • Export Citation
  • E. Zinner 1998 Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites Annual Review of Earth and Planetary Sciences 26 147 188.

    • Search Google Scholar
    • Export Citation
  • M. Yoshikawa Y. Mori H. Obata M. Maegawa G. Katagiri H. Ishida A. Ishitani 1995 Raman scattering from nanometer-sized diamond Applied Physics Letters 67 694 697.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2020  
Scimago
H-index
24
Scimago
Journal Rank
0,253
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
59/33=1,8
Scopus
Cite Score Rank
Geology 134/251 (Q3)
Scopus
SNIP
0,679
Scopus
Cites
146
Scopus
Documents
4
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance
Rate
36%

 

2019  
Scimago
H-index
22
Scimago
Journal Rank
0,313
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
43/33=1,3
Scopus
Cite Score Rank
Geology 151/235(Q3)
Scopus
SNIP
0,593
Scopus
Cites
106
Scopus
Documents
7
Acceptance
Rate
47%

 

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Publication
Programme
2021 Volume 64
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 1 0 0
Jun 2021 1 0 0
Jul 2021 3 0 0
Aug 2021 2 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0