View More View Less
  • 1 Department of Mineralogy Geochemistry and Petrology, University of Szeged, Szeged, Hungary
  • | 2 H-6701, Szeged, P. O. Box 651, Hungary, mtoth@geo.u-szeged.hu
Restricted access

Abstract

The Kiskunhalas-NE (KIHA-NE) fractured hydrocarbon reservoir is part of the structurally rather complex crystalline basement of the Great Hungarian Plain. In the course of petrologic and thermometric examinations various rock types of the investigated area have been classified and characterized. There are four basic lithological units in the area. In the lowest structural position orthogneiss is common, which according to its petrographic features is assumed to be identical to the orthogneiss body of the adjacent Jánoshalma (JH) basement high (metamorphic peak temperature T < 580 °C according to Zachar and M. Tóth 2004). The next rock unit upward is the highly mylonitized variety of the orthogneiss with textural features suggesting deformation in an extensional stress regime. In the higher section of the mylonite zone graphitic gneiss mylonite is characteristic, with a peak metamorphic T of 410±45 °C. The lithology in the shallowest position of the area is a graphitic carbonate phyllite, with a T of 375 ± 15 °C. Estimation of the deformation temperature for both mylonitic rocks results in approximately Tdef ∼ 455 °C. All data together suggest that between the top (graphitic carbonate phyllite) and the bottom (orthogneiss) of the ideal rock column there is about 200 °C peak metamorphic temperature deviation. The two extreme metamorphic blocks probably became juxtaposed along an extensional fault zone in the basement at approximately 15 km depth.

  • Árkai, P. 1991: Kishõmérsékletû regionális metamorfózis (Low temperature regional metamorphism). — DSc Thesis. Budapest, 190 p.

    • Search Google Scholar
    • Export Citation
  • Árkai, P. 1978: A Kiskunhalas ÉK-i terület mezozoikumnál idõsebb metamorf és magmás képzõdményeinek szénhidrogénprognózist elõsegítõ ásványtan-kõzettani és geokémiai vizsgálata (Mineralogical-petrological investigation of the igneous and metamorphic formations of the Kiskunhalas-NE region older than Mesozoic to improve hydrocarbon prognostics). — MTA GKI, Manuscript.

    • Search Google Scholar
    • Export Citation
  • M. Aoya Y. Kouketsu S. Endo H. Shimizu T. Mizukami D. Nakamura S. Wallis 2010 Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks J. Metamorphic Geol. 28/9 895 914.

    • Search Google Scholar
    • Export Citation
  • O. Beyssac B. Goffé C. Chopin N. Rouzaud 2002 Raman spectra of carbonaceous material in metasediments: a new geothermometer J. Metamorphic Geol. 20 859 871.

    • Search Google Scholar
    • Export Citation
  • O. Beyssac B. Goffé J.-P. Petitet E. Froigneux M. Moreau J.-N. Rouzaud 2003 On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy Spectrochimica Acta Part A 59 2267 2276.

    • Search Google Scholar
    • Export Citation
  • O. Beyssac L. Bollinger J.-P. Avouac B. Goffé 2004 Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material Earth and Planetary Science Letters 225 233 241.

    • Search Google Scholar
    • Export Citation
  • L. Cserepes 1980 A Duna-Tisza Közi karbonnál idõsebb képzõdmények petrológiai vizsgálata MSZKFI Budapest (Petrologic study of the formations older than Carboniferous of the Danube-Tisza Interfluve).

    • Search Google Scholar
    • Export Citation
  • B. Cserepes-Meszéna 1986 Petrography of the crystalline basement of the Danube-Tisza Interfluve (Hungary) Acta Geologica Hungarica 29/ 3–4 321 339.

    • Search Google Scholar
    • Export Citation
  • L. Csontos A. Nagymarosi 1998 The Mid-Hungarian line: a zone of repeated tectonic inversion Tectonophysics 297 51 71.

  • Haas, J., T. Budai, L. Csontos, L. Fodor, Gy. Konrád 2010: Pre-Cenozoic geological map of Hungary, 1:500 000. — Geological Institute of Hungary.

    • Search Google Scholar
    • Export Citation
  • G. Hirth J. Tullis 1992 Dislocation creep regimes in quartz aggregates Journal of Structural Geology 14 145 159.

  • Jánosi, T. T. M. Tóth, Zs. Jánosi 2007: Kvarc szutúra mintázatok képanalízise és termometriai alkalmazásuk (Image analysis and termometrical application of quartz suture patterns). — Conference on Mining, Metallurgy and Geology Buziásfürdõ, pp. 206209.

    • Search Google Scholar
    • Export Citation
  • J. H. Kruhl M. Nega 1996 The fractal shape of sutured quartz grain boundaries: application as a geothermometer Geol. Rundsch 85 38 43.

  • B. Kwiecinska I. Suárez-Ruiz C. Paluszkiewicz S. Rodriques 2010 Raman spectroscopy of selected carbonaceous samples International Journal of Coal Geology 84 206 212.

    • Search Google Scholar
    • Export Citation
  • A. Lahfid O. Beyssac E. Deville F. Negro C. Chopin B. Goffé 2010 Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland) Terra Nova 22 354 360.

    • Search Google Scholar
    • Export Citation
  • S. Majumder M.A. Mamtani 2009 Fractal analysis of quartz grain boundary sutures in a granite (Malanjkhand, Central India) — Implications on Infer Regional Tectonics Journal Geological Society of India 73 309 319.

    • Search Google Scholar
    • Export Citation
  • B.B. Mandelbrot 1967 How long is the coast of Britain? Statistical self-similarity and fractional dimension Science 156 636 638.

  • T. Masuda A. Fujimura 1981 Microstructural development of fine-quartz aggregates by syntectonic recrystallization Tectonophysics 72 105 128.

    • Search Google Scholar
    • Export Citation
  • M. Tóth , T. F. Schubert, T. Földes, Cs. Hollós, J. Komlósi 2002: Modelling of the fractured Dorozsma crystalline reservoir, SE Pannonian Basin. — EAGE Annual Meeting Abstracts, pp. 297.

    • Search Google Scholar
    • Export Citation
  • M. Tóth T. J. Zachar 2006 Petrology and deformation history of the metamorphic basement in the Mezosas-Furta crystalline high (SE Hungary) Acta Geologica Hungarica 49/ 2 165 188.

    • Search Google Scholar
    • Export Citation
  • R.J. Nemanich S.A. Solin 1979 First- and second-order Raman scattering from finite-size crystals of graphite Physical Review B 20 392 401.

    • Search Google Scholar
    • Export Citation
  • C.W. Passchier R.A.J. Trouw 2005 Microtectonics Springer Berlin Heidelberg.

  • J.M. Rahl K.M. Anderson M.T. Brandon C. Fassoluas 2005 Raman spectroscopic carbonaceous material thermometry of low grade metamorphic rocks: Callibration and application to tectonic exhumation in Crete, Greece Earth and Planetary Science Letters 240/ 2 339 354.

    • Search Google Scholar
    • Export Citation
  • G. Rantitsch R.F. Sachsenhofer C. Hasenhuttl B. Russegger T. Rainer 2005 Thermal evolution of an extensional detachment as constrained by organic metamorphic data and thermal modeling: Graz Paleozoic Nappe Complex (Eastern Alps) Tectonophysics 411 57 72.

    • Search Google Scholar
    • Export Citation
  • F. Schubert T. M. Tóth 2002 Structural evolution of mylonitized gneiss zone from the Norther flank of the Szeghalom dome (Pannonian Basin, SE, Hungary) Acta Min. Pet. Szeged 42 59 64.

    • Search Google Scholar
    • Export Citation
  • K. Szepesházy 1962 Mélyföldtani adatok a Nagykõrös-Kecskeméti területrõl Földtani Közl. 92 40 52 (Deep structure data from the Nagykõrös-Kecskemét area).

    • Search Google Scholar
    • Export Citation
  • G. Kovács 1973 A Duna-Tisza köze déli részének földtani fejlõdés története JATE Szeged, Hungary (Geological evolution of the southern part of the Danube-Tisza Interfluve).

    • Search Google Scholar
    • Export Citation
  • G. Kovács B. Kurucz 1984 A Dél-Alföld mezozoikumnál idõsebb képzõdményei MÁFI Budapest (Formations older than Mezozoic of the Southern Great Hungarian Plain).

    • Search Google Scholar
    • Export Citation
  • M. Takahashi H. Nagahama T. Masuda A. Fujimura 1998 Fractal analysis of experimentally, dynamically recrystallized quartz grains and its possible application as a strain rate meter Journal of Structural Geology 20/ 2–3 269 275.

    • Search Google Scholar
    • Export Citation
  • F. Tuinstra J.L. Koenig 1970 Raman spectrum of graphite Journal of Chemical Physics 53 1126 1130.

  • J. Zachar T. M. Tóth 2001 Myrmekite-bearing gneiss from the Szeghalom Dome (Pannonian Basin, SE Hungary) Part II.: Origin and spatial relationships Acta Min. Pet. Szeged 42 39 43.

    • Search Google Scholar
    • Export Citation
  • J. Zachar T. M. Tóth 2004 Petrology of the metamorphic basement of the Tisza Block at the Jánoshalma High, S Hungary Acta Geologica Hungarica 47/ 4 349 371.

    • Search Google Scholar
    • Export Citation
  • J. Zachar T. M. Tóth M. Janák 2007 Kyanite eclogite xenoliths from the orthogneiss terrane of the Tisza Megaunit, Jánoshalma area, crystalline basement of southern Hungary Lithos 99 249 265.

    • Search Google Scholar
    • Export Citation
  • T.F. Yui E. Huang J. Xu 1996 Raman spectrum of carbonaceous material: a possible metamorphic grade indicator for low-grade metamorphic rocks J. Metamorph Geol. 14 115 124.

    • Search Google Scholar
    • Export Citation
  • G. Voll 1980 Ein Querprofil durch die Schweizer Alpen vom Vierwaldstatter See zur Wurzelzone- Strukturen und ihre Entwicklung durch Deformationsmechanismen wichtiger Minerale Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 160 321 335.

    • Search Google Scholar
    • Export Citation
  • M. Wiederkehr R. Bousquet M. A. Ziemann A. Berger S.M. Schmid 2011 3-D assessment of peakmetamorphic conditions by Raman spectroscopy of carbonaceous material: an example from the margin of the Lepontine dome (Swiss Central Alps) Int. J. Earth Sci. (Geol Rundsch) 100/ 5 1029 1063.

    • Search Google Scholar
    • Export Citation
  • D.L. Whitney B.W. Ewans 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185 187.

  • B. Wopenka J.D. Pasteris 1993 Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy American Mineralogist 78 533 557.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2020  
Scimago
H-index
24
Scimago
Journal Rank
0,253
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
59/33=1,8
Scopus
Cite Score Rank
Geology 134/251 (Q3)
Scopus
SNIP
0,679
Scopus
Cites
146
Scopus
Documents
4
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance
Rate
36%

 

2019  
Scimago
H-index
22
Scimago
Journal Rank
0,313
Scimago
Quartile Score
Geology Q3
Scopus
Cite Score
43/33=1,3
Scopus
Cite Score Rank
Geology 151/235(Q3)
Scopus
SNIP
0,593
Scopus
Cites
106
Scopus
Documents
7
Acceptance
Rate
47%

 

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Publication
Programme
2021 Volume 64
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 2 0 0
Aug 2021 3 0 0
Sep 2021 3 0 0
Oct 2021 4 0 0
Nov 2021 9 0 0
Dec 2021 0 0 0