Authors:
Géza Szendrei Hungarian Natural History Museum, H-1088, Budapest, Baross u. 13, Hungary

Search for other papers by Géza Szendrei in
Current site
Google Scholar
PubMed
Close
,
Péter Kovács-Pálffy Geological and Geophysical Institute of Hungary, H-1143, Budapest, Stefánia u. 14, Hungary

Search for other papers by Péter Kovács-Pálffy in
Current site
Google Scholar
PubMed
Close
,
Mária Földvári Geological and Geophysical Institute of Hungary, H-1143, Budapest, Stefánia u. 14, Hungary

Search for other papers by Mária Földvári in
Current site
Google Scholar
PubMed
Close
, and
Kamilla Gál-Sólymos Eötvös Loránd University, H-1117, Budapest, Pázmány P. sétány 1/C, Hungary

Search for other papers by Kamilla Gál-Sólymos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is little data on the mineralogy of carbonate pedofeatures in the calcareous soils in Hungary which belong to the European prairie ecodivision. The aim of the present study is to enrich these data.

The mineralogical composition of the carbonate pedofeatures from characteristic profiles of the calcareous soils in Hungary was studied by X-ray diffractometry, thermal analysis, SEM combined with microanalysis, and stable isotope determination.

Regarding carbonate minerals only aragonite, calcite (+ magnesian calcite) and dolomite (+proto-dolomite) were identified in carbonate grains, skeletons and pedofeatures.

The values relating, respectively, to stable isotope compositions (C13, O18) of carbonates in chernozems and in salt-affected soils were in the same range as those for recent soils (latter data reported earlier). There were no considerable differences between the values for the carbonate nodules and tubules from the same horizons, nor were there significant variations between the values of the same pedofeatures from different horizons (BC-C) of the same profile. Thus it can be assumed that there were no considerable changes in conditions of formation.

Tendencies were recognized in the changes of (i) carbonate mineral associations, (ii) the MgCO3 content of calcites, (iii) the corrected decomposition temperatures, and (iv) the activation energies of carbonate thermal decompositions among the various substance-regimes of soils.

Differences were found in substance-regimes types of soils rather than in soil types.

  • R.G. Amundson L.J. Lund 1987 The stable isotope chemistry of a native and irrigated Typic Natrargrid in San Joaquin valley of California Soil Science Society America, Proceedings 51 761 767.

    • Search Google Scholar
    • Export Citation
  • M. Arnold P. Somogyvári J. Paulik F. Paulik 1987 The Derivatograph-C. A microcomputercontrolled simultaneous TG, DTG, DTA, TG and EGA apparatus. Part II. A simple method of estimating kinetic parameters Journal of Thermal Analysis 32 679 683.

    • Search Google Scholar
    • Export Citation
  • B. Bajnóczi 2007 Mineralogical and geochemical studies on carbonates in special regard to carbonate facies of paleosols and metamorphic rocks Final reports. Posztdoktori OTKA pályázat (D 048631) 8.

    • Search Google Scholar
    • Export Citation
  • B. Bajnóczi V. Kovács-Kis 2006 Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope composition — a case study of a Quaternary paleosol from Hungary Chemie der Erde 66 203 212.

    • Search Google Scholar
    • Export Citation
  • R. Bailey 1995 Ecoregions: the Ecosystem Geography of the Oceans and Continents Springer. New York 176.

  • L. Bal 1977 The formation of carbonate nodules and intercallary crystals in the soil by the earthworm Lumbricus rubellus Pedobiologia 17 102 106.

    • Search Google Scholar
    • Export Citation
  • J. Becze-Deák R. Langhor E.P. Verrecchia 1997 Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleo — environmental reconstruction Geoderma 76 221 252.

    • Search Google Scholar
    • Export Citation
  • M.J. Briones E. López J. Méndez J.B. Rodriguez L. Gao-Duport 2008 Biological control over the formation and storage of amorphous calcium carbonate by earthworm Mineralogical Magazine 72/1 227 231.

    • Search Google Scholar
    • Export Citation
  • P. Bullock N. Fedoroff A. Jongerius G. Stoops T. Tursina, with a contribution from U. Babel 1985 Handbook for soil thin section description Waine Research Publications. Wolverhampton 152.

    • Search Google Scholar
    • Export Citation
  • G. Cailleau E.P. Verrecchia O. Braissant L. Emmanuel 2009 The biogenic origin of needle-fibre calcite Sedimentology 56 1858 1875.

  • M.G. Canti 2009 Experiments on the origin of 13C in the calcium carbonate granules produced by earthworm Lumbricus terrestris Soil Biology and Biochemistry 41 2588 2592.

    • Search Google Scholar
    • Export Citation
  • M.G. Canti T.G. Piearce 2003 Morphology and dynamics of calcium carbonate granules produced by different earthworm species Pedobiologia 47 511 521.

    • Search Google Scholar
    • Export Citation
  • T.E. Cerling 1984 The stable isotopic composition of modern soil carbonate and its relationship to climate Earth and Planetary Science Letters 71 229 240.

    • Search Google Scholar
    • Export Citation
  • Y. Cui M. JianYing S. Wei 2011 Application of stable isotope techniques to the study of soil salinization Journal of Arid Land 3/4 285 291.

    • Search Google Scholar
    • Export Citation
  • K. Darab M. Reményi 1978 Properties of magnesium affected soils and their micromineralogical compositions Agrokémia és Talajtan 27 357 375.

    • Search Google Scholar
    • Export Citation
  • A. Demény I. Fórizs 1991 On some preparation methods in stable isotope mass spectrometry and their geochemical applications Rapid Communications in Mass Spectrometry 11 524 526.

    • Search Google Scholar
    • Export Citation
  • H.E. Doner W.C. Lynn 1989 Carbonate, halide, sulfate and sulfide minerals. In: Minerals in Soil Environments Soil Science Society of America, Inc. Madison Book Series, No 1 Madison 279 330.

    • Search Google Scholar
    • Export Citation
  • H.E. Doner P. R. Grossl 2002 Carbonates and evaporites Soil Mineralogy with Environmental Applications Soil Science Society of America, Inc. Madison Book Series 199 227.

    • Search Google Scholar
    • Export Citation
  • N. Durand H. Curtis Monger M.G. Canti 2010 Calcium Carbonate Features G. Stoops V. Marcelino F. Mees Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam 149 193.

    • Search Google Scholar
    • Export Citation
  • FAO/ISRIC/ISSS 1998 World Reference Base for Soil Resources, World Soil Resources Report, No. 84, FAO — Rome.

  • M. Földvári 1999 The use of corrected thermal decomposition temperature in the geological interpretation Journal of Thermal Analysis and Calorimetry 56 909 916.

    • Search Google Scholar
    • Export Citation
  • H. Fujimori T. Oonori S. Kochi T.A. Prolla S. Someya 2006 Synthesis of protodolomite from coral reef sand Food Chemistry 99 15 18.

  • L. Gago-Duport M.J.I. Briones J.B. Rodrígez B. Covelo 2008 Amorphous calcium carbonate biomineralization in the earthworm's calciferous gland: Pathways to formation of crystalline phases Journal of Structural Biology 162 422 435.

    • Search Google Scholar
    • Export Citation
  • M.I. Gerasimova S.V. Gubin S.A. Shoba 1996 Soils of Russia and adjacent countries: geography and micromorphology Moscow — Wageningen 204.

    • Search Google Scholar
    • Export Citation
  • K. Ghebre-Egziabhier R.J. S.t. Arnaud 1983 Carbonate mineralogy of lake sediments and surrounding soils. 2. The Qu'Appelle lakes Canadian Journal of Soil Science 63 259 269.

    • Search Google Scholar
    • Export Citation
  • M. Gocke K. Pustovoytov P. Kühn G.L.B. Wiesenberg M. Löscher Y. Kuzyakov 2011 Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: δ13C, 14C. Chemical Geology 283 251 260.

    • Search Google Scholar
    • Export Citation
  • D.L. Graf J.R. Goldschmidt 1955 Some hydrothermal synthesis of dolomite and protodolomite Journal of Geology 64 173 187.

  • B. Jones C. Kahle 1993 Morphology, relationship, and origin of fiber and dendrite calcite crystals Journal of Sedimentary Petrology 63/6 1018 1031.

    • Search Google Scholar
    • Export Citation
  • A.G. Jongmans M.M. Pulleman J.C.Y. Marinissen 2001 Soil (micro) structure and earthworm activity in a marine loam under different management International Working Meeting on Micropedology Programme and Abstracts. Universiteit Gent 48.

    • Search Google Scholar
    • Export Citation
  • P. Kovács-Pálffy M. Földvári E. Rálisch-Felgenhauer K. Baráth-Sinyey 2000 Mineralogical characterisation of the fissure fillings in the üveghuta granite Annual Report of the Geological Institute of Hungary 1999 353 378.

    • Search Google Scholar
    • Export Citation
  • B. Lacka M. L-anczont M. Komar T. Madeyska 2008 Stable isotope composition of carbonates in loess at the Carpathian margin (SE Poland) Studia Quaternaria 25 3 21.

    • Search Google Scholar
    • Export Citation
  • R. Lal J.M. Kimble H. Eswaran B.A. Stewart 2000 Global climate change and pedogenic carbonates Lewis Publishers, Boca Raton London 303.

    • Search Google Scholar
    • Export Citation
  • R.S. Lavado 1983 Occurrence of magnesium-bearing calcites in pampean soils, Argentina Geoderma 29 59 66.

  • J.M. McCrea 1950 On the isotopic chemistry of carbonates and a paleotemperature scale Journal of Chemical Physics 18 849 857.

  • E. Micheli M. Fuchs P. Hegymegi P. Stefanovits 2006 Classification of the major soils of Hungary and their correlation with the World Reference Base for Soil Resources Agrokémia és Talajtan 55 19 28.

    • Search Google Scholar
    • Export Citation
  • E.A. Mikhailova C.J. Post 2006 Stable carbon and oxygen isotopes of soil carbonates at depth in the Russian chernozem under different land use Soil Science 171/4 334 340.

    • Search Google Scholar
    • Export Citation
  • L. Milliere O. Hasinger S. Bindschedler G. Cailleau J. Spangenberg E.P. Verrecchia 2011 Stable carbon and oxygen isotope signatures of pedogenic needle fibre calcite Geoderma 161 74 87.

    • Search Google Scholar
    • Export Citation
  • B. Molnár R. Botz 1996 Geochemistry and stable isotope ratio of modern carbonates in natron lakes of the Danube-Tisza Interfluve, Hungary Acta Geologica Hungarica 39/2 153 174.

    • Search Google Scholar
    • Export Citation
  • B. Molnár M. Dinka 1997 Formation of carbonate deposits in Hungarian part of Fertő lake Hidrológiai Közlöny 77/3 115 122.

  • A. Mucci W. Morse 1983 The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition Geochimica and Cosmochimica Acta 47 217 233.

    • Search Google Scholar
    • Export Citation
  • G. Müller F. Wagner 1980 Formation of carbonate deposits of Balaton lake, reflections of climatic and human impacts Hidrológiai Közlöny 60/11 509 518.

    • Search Google Scholar
    • Export Citation
  • S. Ohde Y. Kitano 1978 Synthesis of protodolomite from aqueous solution at normal temperature and pressure Geochemical Journal 12 115 119.

    • Search Google Scholar
    • Export Citation
  • T. Oomori K. Kaneshima T. Taira Y. Kitano 1983 Synthetic studies of protodolomite from brine waters Geochemical Journal 17 147 152.

  • M. Pécsi 1993 Quaternary and loess research Akadémiai Kiadó. Budapest 375.

  • S.E. Philips P.G. Self 1987 Morphology, crystallography and origin of needle-fibre calcite in Quaternary pedogenic calcretes of South Australia Australian Journal of Soil Research 25 429 444.

    • Search Google Scholar
    • Export Citation
  • I. Sisák F. Máté 2008 The necessity of further development of Hungarian soil classification — experience of soil monolit series “Soils of Balaton Landscapes”. Talajvédelem. Különszám Talajvédelmi Alapítvány — Bessenyei György Könyvkiadó Nyíregyháza 653 662.

    • Search Google Scholar
    • Export Citation
  • R.J. St. Arnaud 1979 Nature and distribution of secondary soil carbonates within landscapes in relation to soluble Mg++/Ca++ ratios Canadian Journal of Soil Science 59 87 98.

    • Search Google Scholar
    • Export Citation
  • R.J. St. Arnaud A.J. Herbillon 1973 Occurrence and genesis of secondary magnesium-bearing calcites in soils Geoderma 9 279 298.

  • G. Stoops 2003 Guidelines for Analysis and Description of Soil and Regolith Thin Sections Soils Science Society of America Madison 184.

    • Search Google Scholar
    • Export Citation
  • D. L. Suarez 2005 Chemistry of Salt-Affected Soils Chemical Processes in Soils Soil Science Society of America, Inc. Madison, Book Series, No. 8 689 705.

    • Search Google Scholar
    • Export Citation
  • I. Szabolcs 1966 Handbook for genetic, large scale soil mapping Országos Mezőgazdasági Minőségvizsgáló Intézet Budapest 351.

  • A. Szemethy 1975 X-ray research of the carbonate minerals of Neogene borehole samples A Magyar állami Földtani Intézet évi Jelentés az 1975. Évről 303 314.

    • Search Google Scholar
    • Export Citation
  • G. Szendrei 2000 Soil micromorphology ELTE Eötvös Kiadó Budapest 220.

  • G. Szendrei 2001 Micromorphology of Hungarian soils. — Aula, Budapest 163.

  • G.y. Szöőr I. Barta é. Balázs P. Sümegi 1992 Geochemical facies analysis of Quaternary pelitic deposits of Northeast Lowland Gy. Szöőr Facies analytical, paleobiogeochemical and paleoecological researches Magyar Tudományos Akadémia Debreceni Akadémiai Bizottság Debrecen 45 64.

    • Search Google Scholar
    • Export Citation
  • G.y. Várallyay 1985 Moisture and substance regimes of Hungarian soils Agrokémia és Talajtan 34 3–4 267 299.

  • E.P. Verrecchia K.E. Verrecchia 1994 Needle-fiber calcite: a critical review and proposed classification Journal of Sedimentary Research 64 3 650 664.

    • Search Google Scholar
    • Export Citation
  • D. Wang D.W. Anderson 1998 Stable carbon isotopes of carbonate pendants from chernozemic soils of Saskatchewan, Canada Geoderma 84 309 322.

    • Search Google Scholar
    • Export Citation
  • J. Warren 2000 Dolomite: Occurrence, evolution and economically important associations Earth–Science Review 52 1 81.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2023  
Scopus  
CiteScore 1.4
CiteScore rank Q3 (Geology)
SNIP 0.577
Scimago  
SJR index 0.206
SJR Q rank Q4

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 6 1 1
Aug 2024 39 0 0
Sep 2024 37 0 0
Oct 2024 69 0 0
Nov 2024 35 0 0
Dec 2024 26 0 0
Jan 2025 19 0 0