Author:
István Nemes MOL Group, Budapest, Hungary

Search for other papers by István Nemes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1643-9734
Restricted access

Abstract

Mature fields have been playing a significant role in the oil and gas realm recently, and redevelopment and optimization efforts are being made globally to prolong the lifetime of these resources. The aim of this study is to showcase the benefits of hydrocarbon reservoir modelling, with a special focus on various aspects of Petrel workflows.

This article is a direct continuation of Nemes et al. (2021), which described the Phase 1 geomodel of the same field described in this study. The Phase 2 geomodel – the scope of the current article – is based on a significantly more complete, more detailed, and fundamentally rebuilt dataset compared to Phase 1. The seismic and petrophysical interpretations were updated, and additional data sources were incorporated into the analysis.

The geomodel was created in Schlumberger's Petrel software, and during the building of it, a comprehensive 800-plus-step, full-cycle, automated workflow was outlined. The created workflow makes the model update faster by a minimum of five times, makes it more transparent and decreases the risk of human error.

The created workflow describes the entire geomodelling process from data loading, via surface adjustments, structural modelling, and property modelling, to a closing of the loop with volumetric calculation. The whole workflow can be rerun easily, and beside the updates made to the geomodel, a full range of quality-check supporting calculations and visualizations were created in order to provide the user with full control.

The geomodel showcased here is a key building block of the ongoing and planned development and redevelopment activities in the field, serves as a tool for well and workover planning, water injection system adjustments and a direct input to dynamic simulation, and also provides direct inputs to the documentation of an updated field development plan.

  • Abbaszadeh, M., Koide, N., and Murahashi, Y. (2000). Integrated characterization and flow modeling of a heterogeneous carbonate reservoir in Daleel field, Oman, https://doi.org/10.2118/62514-PA.

    • Search Google Scholar
    • Export Citation
  • Akoum, M. and Hazzaa, H.B. (2019). A data governance framework – the foundation for data management excellence, https://doi.org/10.2118/198593-MS.

    • Search Google Scholar
    • Export Citation
  • Albertini, C., Bigoni, F., Cominelli, A., Della Rossa, E., Francesconi, A., and Tarantini, V. (2014). Karachaganak, integrated reservoir studies on a giant field, https://doi.org/10.2118/172274-MS.

    • Search Google Scholar
    • Export Citation
  • Aung, T.T., Noguchi, S., Oikawa, N., Kanno, T., Tamaki, M., and Akihisa, K. (2011). Integrated facies modeling workflow for methane hydrate reservoir along the eastern Nankai Trough, Japan, https://doi.org/10.2523/IPTC-15303-MS.

    • Search Google Scholar
    • Export Citation
  • Baillie, J., Coombes, T., and Rare, S. (1996). Dunbar reservoir model, a multidisciplinary approach to update brent reservoir description and modelling, https://doi.org/10.2118/35528-MS.

    • Search Google Scholar
    • Export Citation
  • Banks, R.B (1982). New thoughts on an old topic: reservoir integration (volumetrics), https://doi.org/10.2118/11339-MS.

  • Blotskaya, A.I. and Sardarov, G.S. (2020). West Siberia Jurassic sediments rock typing and digital models creating for geological model refining, https://doi.org/10.2118/201965-MS.

    • Search Google Scholar
    • Export Citation
  • Campobasso, S., Gavana, A., Bellentani, G., Pentoli, I., PontiggiaM., Villani, L., and Abdelsamad, T.H. (2005). Multidisciplinary workflow for oil fields reservoir studies - case history: Meleiha Field in Western Desert, Egypt, https://doi.org/10.2118/94066-MS.

    • Search Google Scholar
    • Export Citation
  • Cimic, M. (2006). Russian mature fields redevelopment, https://doi.org/10.2118/102123-MS.

  • Corlett, H., Hodgetts, D., Hirani, J., Rotevatn, A., Taylor, R., and Hollis, C. (2021). A geocellular modelling workflow for partially dolomitized remobilized carbonates: An example from the Hammam Faraun Fault block, Gulf of Suez, Egypt. Marine and Petroleum Geology, 126: 19.

    • Search Google Scholar
    • Export Citation
  • David, R.M., Saputelli, L., Hafez, H., Narayanan, R., Colomban, P., and Al Naqbi, T (2017). Upstream data architecture and data governance framework for efficient integrated upstream workflows and operations, https://doi.org/10.2118/188962-MS.

    • Search Google Scholar
    • Export Citation
  • El-Bagoury, M.A., Fahmy, M., Kamal, M., Saad, A., VanHeeswijk, V., and Kharboutly, R. (2017). Key learnings from re-development activity and waterflood EOR of mature brown field: Heterogeneous compartmentalized reservoir case study, Western Desert, Egypt, https://doi.org/10.2118/188574-MS.

    • Search Google Scholar
    • Export Citation
  • Emerson (2019). Roxar RMS software help. Online.

  • GaffneyCline (2020). Mature fields optimization. GaffneyCline Ltd, p. 4.

  • Galindo, R.O., Galindo-Nava, A., Perez-Alvis, E., and Ortuno, E. (2012). Static/dynamic model for Chac Field based on a novel multidisciplinary workflow, https://doi.org/10.2118/153708-MS.

    • Search Google Scholar
    • Export Citation
  • Golovatskiy, Y., Petrashov, O., Syrtlanov, V., Vafin, I., and Mezhnova, N. (2015). Huge mature fields rejuvenation, https://doi.org/10.2118/177334-MS.

    • Search Google Scholar
    • Export Citation
  • Guseva, D.M., Butenko, V.K., Borisova, L.I., Podosjan, R.N., and Popova, N.N. (1975). Geologija i razrabotka neftjanyh i gazovyh mestorozdenij Orenburgskoj Oblasti. (in Russian) Juzno-uralskoe ot delenie Vsesojuznogo naucno-iscledovatelskogo geologorazvedocnogo neftjanogo instituta, Ministerstvo Geologii SSSR, Privolzskoe Knitnoe Izdatelstvo, p. 256.

    • Search Google Scholar
    • Export Citation
  • Haq, B.U. and Schutter, S.R. (2008). A chronology of Paleozoic sea-level changes. Science, 322: 6468.

  • Kaleta, M., Van Essen, G., Van Doren, J., Bennett, R., Van Beest, B., Van Den Hoek, P., Brint, J., and Woodhead, T. (2012). Coupled static/dynamic modeling for improved uncertainty handling, https://doi.org/10.2118/154400-MS.

    • Search Google Scholar
    • Export Citation
  • Kolchugin, A.N., Morozov, V.P., Korolev, E.A., and Eskin, A.A. (2014). Carbonate formation of the lower Carboniferous in central part of Volga–Ural Basin – Research Communication. Current Science, 107(12): 20292035.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Wen, X.-H., He, J., Lin, W., Yardumian, H., Fahruri, I., Zhang, Y., Orribo, J.M., Ghomian, Y., Marchiano, I.P., and Babafemi, A. (2017). Integrated static and dynamic uncertainties modeling big-loop workflow enhances performance prediction and optimization, https://doi.org/10.2118/182711-MS.

    • Search Google Scholar
    • Export Citation
  • Lukmanov, R. and Ibrahim, E. (2018). Unlocking tight gas volume with integrated multidisciplinary diagnostic approach, https://doi.org/10.2118/191412-18IHFT-MS.

    • Search Google Scholar
    • Export Citation
  • Lupu, D (2019). Current trends in the exploitation of mature gas fields in the context of rehabilitation concept. MATEC Web of Conferences, 290: 10005.

    • Search Google Scholar
    • Export Citation
  • Mantopoulos, A., Marques, D.A., Hunt, S.P., Ng, S., Fei, Y., and Haghighi, M. (2015). Best practice and lessons learned for the development and calibration of integrated production models for the Cooper Basin, Australia, https://doi.org/10.2118/176131-MS.

    • Search Google Scholar
    • Export Citation
  • Martino, L., Iuliano, A., Sezai, U., and Hern, C. (2012). Reviewing mature fields – a case history, https://doi.org/10.2118/169270-MS.

    • Search Google Scholar
    • Export Citation
  • McComb, T. and Towler, B.F. (2013). How to tackle the challenge of mature field development. The Way Ahead, 9(3): 1820.

  • Meyerhoff, A.A (1984). Carboniferous oil and gas production in the eastern hemisphere. Journal of Petroleum Geology, 7(2): 125146.

  • Muhammad, N.A.A., Nemes, I., Bihari, Zs., Soltész, H., Bárány, Á., Tóth, L., Borka, Sz., and Ferincz, Gy. (2022). Naturally fractured carbonate reservoir characterization: A case study of a mature high-pour point oil field in Hungary, https://doi.org/10.30632/SPWLA-2022-0109.

    • Search Google Scholar
    • Export Citation
  • Nemes, I (2016). Revisiting the applications of drainage capillary pressure curves in water-wet hydrocarbon systems. Open Geosciences, 8(1): 2238.

    • Search Google Scholar
    • Export Citation
  • Nemes, I, Szilágyi Sebők, Sz., and Csató, I. (2021). Challenges of a mature Russian field's re-development – advantages and disadvantages of quick-look geological modelling. Central European Geology, 64(2): 7490.

    • Search Google Scholar
    • Export Citation
  • Ng, K.F., Afandi, T., Sa'adon, D., Ja'afar, J., Omar, M.A., Latiff, N.A., Santoso, G.I., Alang, K., Roberts, I.D., Murad, N., Permanasari, D., and Kutty, F. (2016). Success Story: A new development concept utilising new advanced technology in a very old complex mature field, https://doi.org/10.2118/176120-MS.

    • Search Google Scholar
    • Export Citation
  • O'Brien, J., Sayavedra, L., Mogollon, J.L., Lokhandwala, T., and Lakani, R. (2016). Maximizing mature field production – a novel approach to screening mature fields revitalization options, https://doi.org/10.2118/180090-MS.

    • Search Google Scholar
    • Export Citation
  • Okuyiga, M., Berrim, A., Shehab, R., Haddad, S., Xian, C., and Lawi, M.A. (2007). Multidisciplinary approach and new technology improve carbonate reservoir evaluation, https://doi.org/10.2523/IPTC-11528-MS.

    • Search Google Scholar
    • Export Citation
  • Orenburgskaja neftjanaja akcionernaja kompanija (ONAKO) (1997). Geologiceskoe stroenie i neftegazonosnost Orenburgskoj Oblasti. (in Russian) Orenburgskoe Kniznoe Izdatelstvo, pp. 4356.

    • Search Google Scholar
    • Export Citation
  • Pápay, J. (2003). Development of petroleum reservoirs. Akadémiai Kiadó, p. 940.

  • Parfenov, A.N., Sitdikov, S.S., Evseev, O.V., Shashel, V.A., and Butula, K.K. (2008). Particularities of hydraulic fracturing in dome type reservoirs of Samara Area in the Volga-Urals Basin, https://doi.org/10.2118/115556-MS.

    • Search Google Scholar
    • Export Citation
  • Parshall, J. (2012). Mature fields hold big expansion opportunity. Journal of Petroleum Technology, 10: 5258.

  • Peterson, J.A. and Clarke, J.W. (1983). Geology of the Volga-Ural petroleum province and detailed description of the Romashkino and Arlan oil fields. USGS Open-File Report: 83711.

    • Search Google Scholar
    • Export Citation
  • Pyrcz, M.J. and Deutsch, C.V. (2014). Geostatistical reservoir modeling. Oxford University Press, p. 449.

  • Rajput, S., Xinjun, M., Bal, A., Rahman, K., and Junwen, W. (2015). Reducing uncertainty in horizontal well placement for improved field development, https://doi.org/10.2118/175083-MS.

    • Search Google Scholar
    • Export Citation
  • Ringrose, P (2008). Total-property modeling: dispelling the net-to-gross myth, https://doi.org/10.2118/106620-PA.

  • Ringrose, P. and Bentley, M. (2015). Reservoir model design – a practitioner's guide. Springer, p. 250.

  • Saikia, K., Khan, W., and Ramakrishnan, S. (2015). Challenges in deepwater reservoir characterization: From well log interpretation and well testing to 3D geocellular modeling, https://doi.org/10.2118/175071-MS.

    • Search Google Scholar
    • Export Citation
  • Sanasi, C., Dal Forno, L., Maccarini, G.R., Mutidieri, L., Tempone, P., Mezzapesa, D., Dalla Rosa, M., Bucci, A., Rinaldi, F., and Andreoletti, C. (2021). Company data governance transformation to support the business evolution, https://doi.org/10.2118/207525-MS.

    • Search Google Scholar
    • Export Citation
  • Sarkar, S., Kumar, S., Reddy, K., Shankar, V., Mishra, U.S., and Sabharwal, V. (2015). Arresting decline in the Ravva field: Success story of Phase-5 drilling campaign, https://doi.org/10.2118/178753-MS.

    • Search Google Scholar
    • Export Citation
  • Schlumberger (2021). Petrel Guru. Build: 20161025.1.

  • Shirazi, A.F., Solonitsyn, S.V., and Kuvaev, I.A. (2010). Integrated geological and engineering uncertainty analysis workflow, Lower Permian Carbonate Reservoir, Timan-Pechora Basin, Russia, https://doi.org/10.2118/136322-MS.

    • Search Google Scholar
    • Export Citation
  • Szilágyi Sebők, Sz., Csató, I., and Nemes, I. (2021). Sedimentology and depositional system of a transitional shallow marine- coastal complex, Lower Visean deposits in the Central Volga-Ural Petroleum Province, Orenburg. Central European Geology, 64(2): 113132.

    • Search Google Scholar
    • Export Citation
  • Tiwari, A., Shanna, N.M., Manickavasagam, C., and Fartiyal, P. (2015). Production optimisation in mature fields, https://doi.org/10.2118/178090-MS.

    • Search Google Scholar
    • Export Citation
  • Vo Thanh, H, Sugai, Y., Nguele, R., and Sasaki, K. (2019). Integrated workflow in 3D geological model construction for evaluation of CO2 storage capacity of a fractured basement reservoir in Cuu Long Basin, Vietnam. International Journal of Greenhouse Gas Control, 90: 14.

    • Search Google Scholar
    • Export Citation
  • Volz, R.F., Burn, K., Litvak, M.L., Thakur, S.C., and Skvortsov, S. (2008). Field development optimization of Eastern Siberian giant oil field development under uncertainty, https://doi.org/10.2118/116831-MS.

    • Search Google Scholar
    • Export Citation
  • Waskito, L.B., Widiatmo, R., Gunawan, H., and Pengxiao, S. (2015). Integrated offshore mature field revitalization in Asri Basin, North Business Unit Area, Southeast Sumatra, Indonesia, https://doi.org/10.2118/176250-MS.

    • Search Google Scholar
    • Export Citation
  • Zonenshain, L.P., Korinevsky, V.G., Kazmin, V.G., Pechersky, D.M., Khain, V.V., and Matveenkov, V.V. (1984). Plate tectonic model of the south Urals development. Tectonophysics, 109: 95135.

    • Search Google Scholar
    • Export Citation
  • Zozulya, A., Petrakov, Y., Karpekin, Y., Blinov, V., Weinheber, P., and Karipov, I. (2016). New life for old fields: Identification of bypassed productive zones, formation evaluation and formation testing through casing with modern wireline tools, https://doi.org/10.2118/182102-MS.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Attila DEMÉNY

Deputy Editor(s)-in-Chief: Béla RAUCSIK

Co-ordinating Editor(s): Gábor SCHMIEDL

Editorial Board

  • Zsolt BENKÓ (Geochemistry, Ar dating; Institute for Nuclear Research, Debrecen)
  • Szabolcs HARANGI (Petrology, geochemistry, volcanology; Eötvös Loránd University, Budapest)
  • Anette GÖTZ (Sedimentology; Landesamt für Bergbau, Energie und Geologie, Hannover)
  • János HAAS (Regional Geology and Sedimentology; Eötvös Loránd University, Budapest)
  • István Gábor HATVANI (Geomathematics; Institute for Geological and Geochemical Research, Budapest)
  • Henry M. LIEBERMAN (Language Editor; Salt Lake City)
  • János KOVÁCS (Quaternary geology; University of Pécs)
  • Szilvia KÖVÉR (Sedimentology; Eötvös Loránd University, Budapest)
  • Tivadar M. TÓTH (Mineralogy; Petrology    University of Szeged)
  • Stephen J. MOJZSIS (Petrology, geochemistry and planetology; University of Colorado Boulder)
  • Norbert NÉMETH (Structural geology; University of Miskolc)
  • Attila ŐSI (Paleontology; Eötvös Loránd University, Budapest)
  • József PÁLFY (Fossils and Stratigraphic Records; Eötvös Loránd University, Budapest)
  • György POGÁCSÁS (Petroleum Geology; Eötvös Loránd University, Budapest)
  • Krisztina SEBE (Tectonics, sedimentology, geomorphology University of Pécs)
  • Ioan SEGHEDY (Petrology and geochemistry; Institute of Geodynamics, Bucharest)
  • Lóránd SILYE (Paleontology; Babeș-Bolyai University, Cluj-Napoca)
  • Ákos TÖRÖK (Applied and Environmental Earth Sciences; Budapest University of Technology and Economics, Budapest)
  • Norbert ZAJZON (Petrology and geochemistry; University of Miskolc)
  • Ferenc MOLNÁR (ore geology, geochemistry, geochronology, archaeometry; Geological Survey of Finland, Espoo)

Advisory Board

Due to the changes in editorial functions, the Advisory Board has been terminated. The participation of former Advisory Board members is highly appreciated and gratefully thanked.

CENTRAL EUROPEAN GEOLOGY
Institute for Geochemical Research
Hungarian Academy of Sciences
Address: Budaörsi út 45. H-1112 Budapest, Hungary
Phone: (06 1) 309 2681
Phone/fax: (06 1) 319 3137
E-mail: demeny@geochem.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier Geo Abstracts
  • GEOBASE
  • SCOPUS
  • Referativnyi Zhurnal
  • Zoological Abstracts

 

2023  
Scopus  
CiteScore 1.4
CiteScore rank Q3 (Geology)
SNIP 0.577
Scimago  
SJR index 0.206
SJR Q rank Q4

Central European Geology
Publication Model Online only Gold Open Access
Submission Fee none
Article Processing Charge none
Regional discounts on country of the funding agency  
Further Discounts  
Subscription Information Gold Open Access
Purchase per Title  

Central European Geology
Language English
Size Vol 1-63: B5
Vol 64- : A4
Year of
Foundation
2007 (1952)
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-2281 (Print)
ISSN 1789-3348 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 54 0 0
Jul 2024 60 0 0
Aug 2024 150 0 0
Sep 2024 90 0 0
Oct 2024 308 1 1
Nov 2024 197 0 0
Dec 2024 11 0 0