View More View Less
  • 1 Budapest University of Technology and Economics, Műegyetem rkp. 3. H-1111 Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $173.00

The Discrete Element Method (DEM) for describing the action mechanism between soil and sweep tool can be used to perform a detailed analysis of draft force, soil cutting, clod-crushing and loosening by taking into account the tillage speed and the three soil phases. This study describes the simulation of the 3D DEM soil model and a cultivator sweep digitized with a 3D scanner, showing the soil—sweep interaction as a function of implement draft force and implement operating speed.

The suitability of the model is validated by comparing the results of laboratory and simulated shear tests (static validation) with the results of soil bin tests (dynamic validation). The mechanical parameters of the sandy soil used for the soil bin tests were measured using the direct shear box test. Cohesion for the soil model used during simulations was set using the parallel bond contact model, where the determining factors were the Young modulus for particle contact (Ec) and bonding (Ēc), the Poisson’s ratio (nu), the normal (σ) and shear (τ) bond strength and the radius of the related volume (cylinder). Once the DEM model parameters were set, the draft force values measured during dynamic testing were harmonized using the value for viscous damping (ci).

The dynamic soil—sweep model was validated using the viscous damping applied based on the simulated and measured draft force values. The validation of the Young modulus to 0.55e6 Pa (Kn = 1.73e4 N/m, Ks = 8.64e3 N/m) enabled us to set the draft force values of the model for different speeds (0.8–4.1 m/s) with an accuracy of 1–4%.

During the analysis of changes in tillage quality, the developed dynamic soil—sweep model showed a high degree of porosity (48%) due to grubbing in the attenuated speed range (0.5–2.1 m/s), and a decreasing tendency (0.41–0.39%) in the non-damped speed range (2.1–4.1 m/s). After the initial equilibrium state, the ratio of average particle contacts for the given porosity decreased in the attenuated speed range (coord number: 4.8), and a slight decrease was also found above speeds of 2.1 m/s (coord number: 5.2). In the model, clod-crushing was examined based on the ratio of sliding contacts, and we found a continuous increase (sliding fraction: 2–15%) in the speed range used for the simulation (0.8–4.1 m/s).

  • Arvidsson, J., Keller, T., (2011. Comparing penetrometer and shear vane measurements with measured and predicted mouldboard plough draught in a range of Swedish soils. Soil Tillage Res. 111, 219223.

    • Search Google Scholar
    • Export Citation
  • Balássy, 1992. A készülék alakjának, méretének és a figyelembe vett mérési pontok számának befolyása a csúsztatási mérések eredményére. Járművek Ép. És Mezőgazdasági Gépek 39. évf., 281284.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Munkholm, L.J., Nyord, T., (2013. A discrete element model for soil–sweep interaction in three different soils. Soil Tillage Res. 126, 3441. doi:10.1016/j.still.2012.08.008

    • Search Google Scholar
    • Export Citation
  • Cundall, P.A., (1971. A computer model for simulation progressive large scale movement in blocky rock system. Proc Symp Int Soc Rock Mech Nancy 2.

    • Search Google Scholar
    • Export Citation
  • Cundall, P.A., Hart, R.D., (1992. Numerical modelling of discontinua. Eng. Comput. 101113.

  • Fielke, J.M., (1988. The Influence of the Geometry of Chisel Plough Share Wings on Tillage Forces in Sandy Loam Soil. Dep. Civ. Agric. Eng. Univ. Melb. Master Eng.

    • Search Google Scholar
    • Export Citation
  • Franco, Y., (2005. Determination of discrete element model parameters for soil–bulldozer blade interaction. Master's Thesis Agric. Eng. Tech.-Isr. Inst. Technol.

    • Search Google Scholar
    • Export Citation
  • Glee-Clough, D., Wang, J., Kanok-Nukulchai, W., (1994. Deformation and Failure in Wet Clay Soil: Part 3, Finite Element Analysis of Cutting of Wet Clay by Tines. J Agric Eng Res 58, 121131.

    • Search Google Scholar
    • Export Citation
  • Hofstetter, K., (2002. Analytic method to predict the dynamic interaction of dozer blade with earthen material. Proc. 14th Int. Conf. ISTVS Vicksbg. MS USA.

    • Search Google Scholar
    • Export Citation
  • Itasca, 1999. PFC2D theory and background manual.

  • Itasca, C.G.I., (2008. PFC3D (Particle Flow Code in 3 Dimensions), Version 4.0. Minneapolis: ICG.

  • Kruyt, N.P., Rothenburg, L., (2001. Statistics of the elastic behaviour of granular materials. Int. J. Solids Struct. 48794899.

  • Liu Yan , Hou Zhi-Min, (1985. Three Dimensional Nonlinear Finite element Analysis of Soil Cutting by Narrow Blades. Soil Dyn. Relat. Tillage Mach. Syst. Conference on Soil Dynamics, Auburn, Alabama, 322337.

    • Search Google Scholar
    • Export Citation
  • Matthew, R., Kuhn, M.A., Bagi, K., (2009. Specimen Size Effect in Discrete Element Simulations of Granular Assemblies. J. Eng. Mech. 135, 485492.

    • Search Google Scholar
    • Export Citation
  • Mouazen, A., (2002. Mechanical behaviour of the upper layers of a sandy loam soil under shear loading. J. Terramechanics 39, 115126.

  • Mouazen, A.M., Nemenyi, M., (1999. Finite element analysis of subsoiler cutting in nonhomogeneous sandy loam soil. Soil Tillage Res. 51, 115.

    • Search Google Scholar
    • Export Citation
  • Mouazen, A.M., Neményi, M., Schwanghart, H., Rempfer, M., (1999. Tillage tool design by the finite element method: Part 2. Experimental validation of the finite element results with soil bin test. J. Agric. Eng. Res. 72, 5358.

    • Search Google Scholar
    • Export Citation
  • Ono, I., Nakashima, H., Shimizu, H., Miyasaka, J., Ohdoi, K., (2013. Investigation of elemental shape for 3D DEM modeling of interaction between soil and a narrow cutting tool. J. Terramechanics 50, 265276. doi:10.1016/j.jterra.2013.09.001.

    • Search Google Scholar
    • Export Citation
  • Owen, D.R.J., Feng, Y.T., De Souza Neto, E.A., Cottrell, M., Wong, F., Andrade Pires, F.M., Yu, J., (2002. The modeling of multi-fracture solids and particulate media. Proc. Fifth World Congr. Comput. Mech. WCCN V Vienna Austria.

    • Search Google Scholar
    • Export Citation
  • Rowe, R.J., Barnes, K.K., (1961. Influence of speed on elements of draft of a tillage tool. Trans. Am. Soc. Agric. Eng. 4, 5557.

  • Sadek, M.A., Chen, Y., Liu, J., (2011. Simulating shear behavior of a sandy soil under different soil conditions. J. Terramechanics 48, 451458. doi:10.1016/j.jterra.2011.09.006

    • Search Google Scholar
    • Export Citation
  • Saunders, C., Godwin, J.R., O'Dogherty, M.J., (2000. Prediction of soil forces acting on mouldboard ploughs. Fourth Int. Conf. Soil Dyn. Adel. Aust.

    • Search Google Scholar
    • Export Citation
  • Schöpfer, M.P.J., Abe, S., Childs, C., Walsh, J.J., (2009. The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling. Int. J. Rock Mech. Min. Sci. 46, 250261. doi:10.1016/j.ijrmms.2008.03.009

    • Search Google Scholar
    • Export Citation
  • Sitkei, G., (1967. Mezőgazdasági gépek talajmechanikai problémái. Akadémiai kiadó, Budapest.

  • Tamás, K., Jóri, I.J., Mouazen, A.M., (2013. Modelling soil–sweep interaction with discrete element method. Soil Tillage Res. 134, 223231. doi:10.1016/j.still.2013.09.001

    • Search Google Scholar
    • Export Citation
  • Telischi, B., McColly, H.F., Erickson, E., (1956. Draft measurement for tillage tools. Agric. Eng. 37, 605608, 617.

  • Tsuji, T., Nakagawa, Y., Matsumoto, N., Kadono, Y., Takayama, T., Tanaka, T., (2012. 3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. J. Terramechanics 49, 3747. doi:10.1016/j.jterra.2011.11.003

    • Search Google Scholar
    • Export Citation
  • Ucgul, M., Fielke, J.M., Saunders, C., (2014. Three-dimensional discrete element modeling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil. Biosyst. Eng. 121, 105117. doi:10.1016/j.biosystemseng.2014.02.005

    • Search Google Scholar
    • Export Citation
  • Ucgul, M., Fielke, J.M., Saunders, C., (2013. 3D DEM tillage simulation. Part 2: Validation of a hysteretic spring (plastic) contact model for a sweep tooloperating in a cohesionless soil. Soil Tillage Res. doi:10.1016/j.still.2013.10.003

    • Search Google Scholar
    • Export Citation
  • Upadhyaya, S.K., Rosa, U.A., Wulfsohn, D., (2002. Application of the finite element method in agricultural soil mechanics. Adv. Soil Dyn. ASAE St Joseph M 2, 117153.

    • Search Google Scholar
    • Export Citation
  • Wulfsohn, D., Adams, B.A., Fredlund, D.G., (1994. Triaxial testing of unsaturated agricultural soils. Am. Soc. Agric. Eng. Pap. No 941036 St Joseph MI ASAE.

    • Search Google Scholar
    • Export Citation
  • Xie Xiao-Mi , Zhang De-Jun, (1995. An Approch to 3D Nonlinear FE Simulative Method for Investigation os Soil- Tool Dynamic System. Soil Dyn. Relat. Tillage Mach. Syst. International Conference on Soil Dynamics, Proceedings.

    • Search Google Scholar
    • Export Citation
  • Yong, R.N., Hanna, A.W., (1977. Finite element Analysis of Plane Soil Cutting. J. Terramechanics Vol. 14, 103125.

  • Zhang, R., Li, J.Q., Li, Y.W., (2003. Development of simulation on mechanical dynamic behavior of soil by distinct element method. Trans. Chin. Soc. Agric. Eng. 19, 916.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 8 2
Jul 2020 7 0 0
Aug 2020 3 0 0
Sep 2020 9 0 0
Oct 2020 4 0 0
Nov 2020 15 5 1
Dec 2020 2 0 0