View More View Less
  • 1 Université Sultan Moulay Slimane, BP 523, 23000 Béni-Mellal, Morocco
  • | 2 Université Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal, Morocco
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $173.00

Each year, a great quantity of olive oil is produced by the unit mill of trituration. This activity generates two by-products named olive mill wastewater and olive mill solid waste representing major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat wastes to produce valuable oil, char and gas products. The major important aim of waste pyrolysis is to produce liquid fuel or bio-oil, which is easy to store, transport and can be an alternative to energy source. The key influence on the product yield is the type of biomass feedstock and operating parameters (especially temperature and heating rate). It is important to investigate the effect of variables on response yield and impulse about their optimization. This study reviews operating variable from existing literature on olive mill wastes (OMSW and OMWW) in comparison with various types of biomass. The major operating variables include type of feedstock, final temperature of pyrolysis, heating rate and particle size. The scale of this paper is to analyse the influence of operating parameters on production of pyrolysis bio-oil, char and gaseous products.

  • [1]

    Rapport principal. Plan national oléicole 1998-2010. Direction de Production Végétale, Ministère de l’Agriculture, de l’Equipement et de l’Environnement, Département de l’Agriculture 2009.

    • Search Google Scholar
    • Export Citation
  • [2]

    Commercialisation et transformation des olives. Division des projets de Mise en Valeur et de l’Industrie Agricole. Direction de la Production Végétale. Effect of waste waters from olive oil extraction plants of the bacterial of soil. Chemosphere 15 (1998) 659664.

    • Search Google Scholar
    • Export Citation
  • [3]

    Y. Lazzeri , Les défis de la mondialisation pour l’oléiculture méditerranéenne, l’olivier en méditerranée, conférence centre culturel français de Tlemcen, Algérie (Novembre 2009).

    • Search Google Scholar
    • Export Citation
  • [4]

    M. C. Amoretti, G. Comet . Le livre de l’olivier (1985), EDISUD.

  • [5]

    A. Annaki, M. Chaouchi . Traitement des margines mélangées avec les eaux usées urbaines par digestion aérobique. Revue Marocaine du génie civil 83 (septembre/ octobre 1999) 5357.

    • Search Google Scholar
    • Export Citation
  • [6]

    Industrie oléicole au Maroc et son impact sur l’environnement: Propositions d’actions de lutte contre la pollution générée par les huileries d’olives 2002/2003, cas de la province de Taounate, p. 14.

  • [7]

    Rapport principal. Ministère de l’agriculture et de la pêche maritime. Veille économique, secteur oléicole, septembre 2013.

  • [8]

    Amélioration de la qualité de l’huile d’olive, Conseil Oléicole International –Madrid (2009).

  • [9]

    Industrie oléicole au Maroc et son impact sur l’environnement: Propositions d’actions de lutte contre la pollution générée par les huileries d’olives, cas de la province de Taounate, 2003/2004, p. 14.

  • [10]

    Ryckeboer et al. . Microbiological aspects of biowaste during composting in monitored compost bin. Journal of Applied Microbiology 94 (2000) 127137.

    • Search Google Scholar
    • Export Citation
  • [11]

    De Bertoldi et al. . The biology of composting: a review. Waste Management and Research 1 (1983) 157176.

  • [12]

    M. Tuomela et al. . Biodegradation of lignin in a compost environment: a review. Bioresource Technology 72 (2000) 169183.

  • [13]

    S. Aissam . Etude de la biodégradation des effluents des huileries (margines) et leur valorisation par production de l’enzyme tannase, 2003, p. 17.

    • Search Google Scholar
    • Export Citation
  • [14]

    Rapport final, Industrie oléicole au Maroc et son impact sur l’environnement: Propositions d’actions de lutte contre la pollution générée par les huileries d’olives, 2003/2004.

  • [15]

    Rapport final, Inventaire du degré de pollution, Secrétariat d’état chargé de l’eau et de l’environnement, Département de l’environnement, Direction de la surveillance et de la prévention des risques, 2008.

  • [16]

    R. Loussert, G. Brousse . L’olivier, techniques agricoles et production méditerranéenne. Ed. G.P. maison neuve de Larose Paris, 1978, p. 464.

    • Search Google Scholar
    • Export Citation
  • [17]

    A. Achkari-Begdouri . Problématiques des margines produites par les huileries et possibilités de valorisation et de traitement, Ministère de l’intérieur, Maroc, 1994.

    • Search Google Scholar
    • Export Citation
  • [18]

    M. Ismaili-Alaoui A. Heddoun . Tentative de modernisation des Maâsra traditionnelles. Unité mobile d’extraction des huiles d’olives. In: Ismaili Alaoui, M., Roussos, S., Perraud-Gaime, I., (Eds.), Biotechnology and quality of Olive tree products around the Mediterranean basin, Actes Editions, Rabat, Maroc, 2006, pp. 243258.

    • Search Google Scholar
    • Export Citation
  • [19]

    A. Nefzaoui, Importance de la production oléicole et des sous-produits de l’olivier, Etude de l'utilisation des sous-produits de l’olivier en alimentation animale en Tunisie. Étude FAO production et santé animales 43 (1984), Rome.

    • Search Google Scholar
    • Export Citation
  • [20]

    L. Di Giovacchino , A. Mascolo, I. Seghiti. Sulle caratteristiche delle acque di vegetazione delle olive. Rivista Italiana delle Sostanze Grasse 65 (1988) 481488.

    • Search Google Scholar
    • Export Citation
  • [21]

    U. Bing, A. Cioni, V. Laurendi . Smaltimento-recupero delle sanse de oliva proveniente da un due fasi mediante distribuzione in campo. Informatore Agrario 47 (1994) 7578.

    • Search Google Scholar
    • Export Citation
  • [22]

    P. Amirante, G. C. Di Renzo , L. Di Giovacchino, B. Bianchi, P. Catalano. Evolution technologique des installations d’extraction de l’huile d’olives. Olivae 48 (1993) 4353.

    • Search Google Scholar
    • Export Citation
  • [23]

    S. H. Beis, O. Onay, O. M. Kochar . Fixed-bed pyrolysis of sunflower seed: influence of pyrolysis parameters on product yields and composition. Energy 26 (2002) 2132.

    • Search Google Scholar
    • Export Citation
  • [24]

    P. Paraskeva, E. Diamadopoulos . Technologies for olive mill wastewater (OMW) treatment: a review. Journal of Chemical Technology and Biotechnology 81 (2006) 14751485.

    • Search Google Scholar
    • Export Citation
  • [25]

    T. Akar et al. . An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace. J Hazard Mater 166 (2009) 12171225.

    • Search Google Scholar
    • Export Citation
  • [26]

    R. Ordonez, P. Gonzalez et al. . Effet de l’amendement avec grignons d’olive sur les nutriments principaux d’un sol agricole. In: Munoz-Carpena R., Ritter A., Tascon C. (Eds), Estudios de la Zona no Saturada, 1999, ISBN: 84-699-1258-5.

    • Search Google Scholar
    • Export Citation
  • [27]

    L. Baeta-Hall et al. . Biodegradation of olive oil husks in composting aerated piles. Bioresource Technol 96 (1005) 6978.

  • [28]

    C. Paredes et al. . Characterization of olive-mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresource Technol 67 (1999) 111115.

  • [29]

    M. L. Cayuela . La production Industrielle de compost écologique à partir des déchets de moulin à huile (huileries), University of Murcia, Spain; 2004.

    • Search Google Scholar
    • Export Citation
  • [30]

    E. Garcia-Castello et al. . Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res 44 (2010) 38832892.

    • Search Google Scholar
    • Export Citation
  • [31]

    A. G. Vlyssides et al. . Integrated strategic approach for reusing olive oil extraction by-products. J Clean Prod 12 (2004) 603611.

  • [32]

    K. Al-Malah et al. . Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep Purif Technol 20 (2000) 225234.

  • [33]

    J. Sierra et al. . Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Sci Total Environ 279 (2001) 207214.

    • Search Google Scholar
    • Export Citation
  • [34]

    P. Galiatsatou et al. . Treatment of olive mill waste water with activated carbons from agricultural by-products. Waste Manage 22 (2002) 803.

    • Search Google Scholar
    • Export Citation
  • [35]

    E. S. Aktas et al. . Characterization and lime treatment of olive mill wastewater. Water Res 35 (2001) 23362340.

  • [36]

    T. Yangui et al. . Potential of hydroxytyrosol-rich composition from olive mill wastewater as a natural disinfectant and its effect on seeds vigour response. Food Chem 117 (2009) 18.

    • Search Google Scholar
    • Export Citation
  • [37]

    Di Giovacchino et al. On the characteristics of oil mills effluents. Note I I. Rivista italiana delle sostanze grasse 65 (1988) 481488.

    • Search Google Scholar
    • Export Citation
  • [38]

    A. G. Vlyssides et al. . Study of a demonstration plant for the co-composting of oliveoil processing wastewater and solid residue. Bioresource Technol 56 (1996) 187193.

    • Search Google Scholar
    • Export Citation
  • [39]

    K. Zein , N. Benyahia. Analyse des problèmes de l’industrie de l’huile d’olive. Contribustion spéciale de sustainable Business Associates (SESEC II) du 28-29 janvier 2003, Suisse.

    • Search Google Scholar
    • Export Citation
  • [40]

    A. Ounas, A. Aboulkas et al. . Pyrolysis of olive residue and sugar cane bagasse: Non isothermal thermogravimetrique. Kinetic Analysis, Bioressource Technology 102 (2011) 1123411238.

    • Search Google Scholar
    • Export Citation
  • [41]

    A. Chouchen et al. . Thermal degradation of olive solid waste: influence of particle size and oxygene concentration. Resources, Conservation and Recycling 54 (2010) 271277.

    • Search Google Scholar
    • Export Citation
  • [42]

    P. Brachi et al. . Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operationg condition, Fuel Processing Technology 130 (2015) 147154.

    • Search Google Scholar
    • Export Citation
  • [43]

    K. Chaabane and al, utilisation de différents types de grignons d’olives dans l’alimentation de lapereaux. World Rabbit Science 5 (1997) 1721.

    • Search Google Scholar
    • Export Citation
  • [44]

    J. Jauhiainen, I. Martín-Gullón, A. Conesa Juan, R, Font. Emissions from pyrolysis and combustion of olive oil solid waste. Journal of Analytical and Applied Pyrolysis 74 (2005) 512517.

    • Search Google Scholar
    • Export Citation
  • [45]

    A. Demirbas . Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72 (2004) 243251.

    • Search Google Scholar
    • Export Citation
  • [46]

    Md. Abu khayer et al. Olive mill waste composting : a review, International Biodeterioration and Biodegradation 85 (2013) 108119.

  • [47]

    L. Theodora-Ioanna et al. . Phenolic and antioxidant potential of olive oil mill wastes, Food Chemistry 125 (2011) 9298.

  • [48]

    A. Chouchene et al. . Combined process for the treatment of olive oil mill wastewater: Absorption on sawdust and combustion of the impregnated sawdust. Bioresource Technology 101 (2010) 69626973.

    • Search Google Scholar
    • Export Citation
  • [49]

    F. Ros de Ursenos et al. . Epuration des margines par digestion anaérobie en vue de leur utilisation comme source d’énergie, valorisation des sous-produits de l’olivier, 1983, pp. 131139.

    • Search Google Scholar
    • Export Citation
  • [50]

    A. Morisot Tournier , J. P. Répercutions agronomique de l’épandage d’effluents et déchets de moulins à huile d’olive. Agronomie. 6 (1986) 235241.

    • Search Google Scholar
    • Export Citation
  • [51]

    M. Mebirouk . Rejets des huileries. Développement d’un procédé intégré dans la biodégradation des polyphénols dans la margine 2002. CMPP News, n°11.

    • Search Google Scholar
    • Export Citation
  • [52]

    I. Fki . The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenol acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chemistry 93 (2005) 197204.

    • Search Google Scholar
    • Export Citation
  • [53]

    I. E. Kapellakis et al. . Olive oil history, production and by-product management. Reviews, Environmental Science and Biotechnology 7 (2008) 126.

    • Search Google Scholar
    • Export Citation
  • [54]

    Y. Yacoub . Valorisation des sous produits. L’investisseur agricole 19 (1997) 1718.

  • [55]

    H. Topal et al. . Olive cake in a circulating fluidized bed. Fuel 82 (2003) 10491056.

  • [56]

    G. Martinez-Garcia et al. . Olive oil waste as a biosorbent for heavy metals. International Biodeterioration and Biodegradation 58 (2006) 231238.

    • Search Google Scholar
    • Export Citation
  • [57]

    A. S. Stasinakis et al. . Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. Journal of Hazardous Materials 160 (2008) 408413.

    • Search Google Scholar
    • Export Citation
  • [58]

    F. Pagnanelli et al. . Olive mill solid residues as heavy metal sorbent material: a preliminary study. Waste Management 22 (2002) 901907.

    • Search Google Scholar
    • Export Citation
  • [59]

    M. Hoogwijk et al. . Exploration of the ranges of the global potential of biomass for energy. Biomass & Bioenergy 25 (2003) 119133.

  • [60]

    I. Carlesi . Etude d’un procédé de gazéification de biomasse en ambiance plasma sur bain de verre, thèse de doctorat d’état, université de Limoges, 2012.

    • Search Google Scholar
    • Export Citation
  • [61]

    C. François-Xavie . Nouvelles stratégies catalytiques pour la gazéification de la biomasse : Influence de métaux imprégnés sur les mécanismes de pyrolyse, thèse de doctorat d’état, université de compiége, 2012.

    • Search Google Scholar
    • Export Citation
  • [62]

    B. B. Uzun et al. . Composition of products obtained via fast pyrolysis of olive-oil residue : effect of pyrolysis emperature. J. Anal. Appl. Pyrolysis 79 (2007) 147153.

    • Search Google Scholar
    • Export Citation
  • [63]

    J. Akhtar et al. . A review on operating for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews 16 (2012) 51015109.

    • Search Google Scholar
    • Export Citation
  • [64]

    A. Roig et al. . An review on olive mill wastes and their valorisation methods. Waste Management 26 (2006) 960969.

  • [65]

    S. Arvelakis et al. . Physicohemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass and Bioenergy 22 (2002) 331348.

    • Search Google Scholar
    • Export Citation
  • [66]

    H. Erkonak et al. . Treatment of olive mill wastewater by supercritical water oxidation. J. of Supercritical Fluids 46 (2008) 142148.

  • [67]

    R. Zanzi et al. . Rapid pyrolysis of agrocultural residues at high temperature. Biomass and Bioenergy 23 (2002) 357366.

  • [68]

    G. Taralas et al. . Pyrolysis of solid residues commencing from the olive oil food industry for potential hydrogen production. J. Anal. Appl. Pyrolysis 76 (2006) 109116.

    • Search Google Scholar
    • Export Citation
  • [69]

    A. E. Putun et al. . Bio-oil from olive oil industry wastes : pyrolysis of olive residue under different conditions. Fuel Processing Technology 87 (2005) 2532.

    • Search Google Scholar
    • Export Citation
  • [70]

    A. Zabaniotou et al. . Olive residues (cutting and kernels) rapid pyrolysis product yields and kinetics. Biomass and Bioenergy 18 (2000) 411420.

    • Search Google Scholar
    • Export Citation
  • [71]

    S. Sensoz etl al. Olive bagasse (Olea europea L) pyrolysis, Bioressource Technology 97 (2006) 429436.

  • [72]

    V. Minkova et al. . Effect of water vapour and biomass nature on yield and quality of the pyrolysis products from biomass. Fuel Processing Technology 70 (2001) 5361.

    • Search Google Scholar
    • Export Citation
  • [73]

    A. Demirbas . Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 72 (2004) 243248.

    • Search Google Scholar
    • Export Citation
  • [74]

    I. Demiral et al. . The effect of different catalystes on the pyrolysis of industrial wastes. Bioressource Technology 99 (2008) 80028007.

    • Search Google Scholar
    • Export Citation
  • [75]

    F. Ana-Rita et al. . Charechterization of biomass pyrolysis tars produced in the relative absence of extraparticle secondary reactions. Fuel 70 (1991).

    • Search Google Scholar
    • Export Citation
  • [76]

    C. Myren et al. . Catalytic tar decomposition of biomass pyrolysis gas with a combination of dolomite and silica. Biomass and Bioenergy 23 (2002) 217227.

    • Search Google Scholar
    • Export Citation
  • [77]

    Y. Sun, J. Cheng . Hydrolysis of lignocellulosic materials for ethanol production : a review, Bioresource Technology 83 (2002) 111.

  • [78]

    C. Dupont et al. . Study about the kinetic processes of biomass steam gasification. Fuel 86 (2007) 3240.

  • [79]

    I. Doymaz et al. . Drying characteristics of the solid by-product of olive oil extraction. Biosystemes Engineering 88 (2004) 213219.

  • [80]

    A. Chouchene et al. . Energetic valorisation of olive mill wastewater impregnated on low cost absorbent : sawdust versus olive solid waste. Energy 39 (2012) 7481.

    • Search Google Scholar
    • Export Citation
  • [81]

    Debdoubi et al. the effect of heating rate on yields and compositions of oil products from esparto pyrolysis. International Journal of Energy Research 30 (2006) 12431250.

    • Search Google Scholar
    • Export Citation
  • [82]

    A. Aboulkas et al. . Co-pyrolysis of oil shale and high density polyethylene: structural characterization of the oil. Fuel Processing Technology 96 (2012) 203208.

    • Search Google Scholar
    • Export Citation
  • [83]

    L. Qiang et al. . Selective fast pyrolysis of biomass impregnated with Zncl2 to produce furfural: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis 90 (2011) 204212.

    • Search Google Scholar
    • Export Citation
  • [84]

    A. Sayigh . Renewable energy-the way forward. Applied Energy 64 (1999) 1530.

  • [85]

    Y. Serdar . Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management 45 (2004) 651671.

  • [86]

    A. E. Putun et al. . Fixed-bed pyrolysis and hydropyrolysis of sunflower bagasse: product yields and compositions. Fuel Processing Technology 46 (1996) 4962.

    • Search Google Scholar
    • Export Citation
  • [87]

    Ayhan Demirbas. Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis 76 (2006) 285289.

  • [88]

    Ayhan Demirbas. Determination of calorific values of bio-chars and pyro-oils from pyrolysis of beech trunkbarks. J. Anal. Appl. Pyrolysis 72 (2004) 215219.

    • Search Google Scholar
    • Export Citation
  • [89]

    J. Rath et al. . Tar crocking from fast pyrolysis of large beech wood particles. Journal of Analytical and Applied Pyrolysis 62 (2002) 8392.

    • Search Google Scholar
    • Export Citation
  • [90]

    J. Bermejo et al. . The role of low molecular weight components in the pyrolysis of pitches. Fuel 74 (1995) 17921799.

  • [91]

    Z. Zhang et al. . Effect of temperature and heating rate in pyrolysis on the yield, structure and oxidation reactivity of pine sawdust biochar, The University of Western Australia.

    • Search Google Scholar
    • Export Citation
  • [92]

    A. E. Putun et al. . Oil production from an arid-land plant: fixed bed pyrolysis and hydropyrolysis of euphorbia rigida. Fuel 75 (1996) 13071312.

    • Search Google Scholar
    • Export Citation
  • [93]

    Cupucine Dupont et al. Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073 K and 1273 K. Fuel 87 (2008) 11551164.

    • Search Google Scholar
    • Export Citation
  • [94]

    Ayhan Demirbas. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrolysis 71 (2004) 803815.

    • Search Google Scholar
    • Export Citation
  • [95]

    S. Vitolo et al. . Treatment of olive oil industry waste. Bioreseource Technology 67 (1999) 129137.

  • [96]

    W. T. Tsai et al. . Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 98 (2007) 2228.

  • [97]

    Binh M. Q. Phan et al. . Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis. Biomass and Bioenergy 62 (2014) 7481.

    • Search Google Scholar
    • Export Citation
  • [98]

    Muzaffer Yasar et al. Asphalten and resid pyrolysis 2: The effect of reaction environment on pathways and selectivities, Departement of Chemical Engineering, University of Delaware, 1976.

    • Search Google Scholar
    • Export Citation
  • [99]

    T. Aysu, M. Masuk Kucuk . Biomass pyrolysis in a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy 64 (2014) 10021025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 144 144 29
Full Text Views 31 12 0
PDF Downloads 58 31 0