View More View Less
  • 1 Szent István University, H-1118 Ménesi út 43-45, Budapest, Hungary
  • | 2 Szent István University, H-1118 Somlói út 14-16, Budapest, Hungar
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $173.00

The aims of our research work were the investigation of postharvest changes of pear samples (Pyrus communis cv. Bosc kobak) during combined cold storage and shelf-life (storage at room temperature), the determination of quality changes by mainly non-destructive methods, the modeling of the changes of the non-destructive parameters (acoustic, impact stiffness coefficient, chlorophyll fluorescence parameters [Fv/Fm, Fm/F0]), and multivariate statistical analysis of the measured and predicted data based on the data of the non-destructive texture analysis (acoustic and impact methods), chlorophyll fluorescence analysis and laser scattering measurement. Storage Time Equivalent Value (STEV) was calculated and introduced based on mass-loss analysis. The changes of the non-destructive parameters were analyzed vs. this virtual storage time (STEV). The changes of acoustic, impact stiffness coefficient and chlorophyll fluorescence parameters can be predicted by exponential function. The predicted time constants of the parameters were 21.0, 45.8, 47.1, 83.4, acoustic, impact stiffness coefficient, Fm/F0, Fv/Fm, respectively. The lower the time constant, the quicker is the change of the given parameter during storage, the higher is its sensitivity. By this point of view, the percentage mass loss related sensitivity to the characterization of textural changes, the predicted acoustic stiffness coefficient was found to be more sensitive than the impact stiffness coefficient. The Fm/F0 value characterized more sensibly the changes of the chlorophyll fluorescence than in the literature commonly used Fv/Fm. The non-contact laser scattering method based significant PLS models were constructed to predict the quality related pear characteristics (mechanical properties, chlorophyll fluorescence parameters).

  • Baltazar, A., Aranda, J.I., González-Aguilar, G., 2008. Bayesian classification of ripening stages of tomato fruit using acoustic impact and colorimeter sensor data Computers and Electronics in Agriculture 60, 113121.

    • Search Google Scholar
    • Export Citation
  • Baranyai, L., Zude, M., 2008. Analysis of laser light migration in apple tissue by Monte Carlo simulation Progress in Agriculture Engineering Sciences 4, 4559.

    • Search Google Scholar
    • Export Citation
  • Baranyai, L., Zude, M., 2009. Analysis of laser light propagation in kiwifruit using backscattering imaging and Monte Carlo simulation Computers and Electronics in Agriculture 69, 3339.

    • Search Google Scholar
    • Export Citation
  • Bron, I.U., Ribeiro, R.V., Azzolini, M., Jacomino, A.P., Machado, E.C., 2004. Chlorophyll fluorescence as a tool to evaluate the ripening of 'Golden' papaya fruit Postharvest Biology and Technology 33, 163173.

    • Search Google Scholar
    • Export Citation
  • Carrara, S., Pardossi, A., Soldatini, G.F., Tognoni, F., Guidi, L., 2001. Photosynthetic activity of ripening tomato fruit Photosynthetica 39, 7578.

    • Search Google Scholar
    • Export Citation
  • Chen, H., De Baerdemaeker, J., 1993. Finite element-based modal analysis of fruit firmness Transactions of the ASAE 36, 18271833.

  • De Belie, N., Schotte, S., Lammertyn, J., Nicolai, B., De Baerdemaeker, J., 2000. PHpostharvest technology: Firmness changes of pear fruit before and after harvest with the acoustic impulse response technique Journal of Agricultural Engineering Research 77, 183191.

    • Search Google Scholar
    • Export Citation
  • De Ketelaere, B., Howarth, M.S., Crezee, L., Lammertyn, J., Viaene, K., Bulens, I., De Baerdemaeker, J., 2006. Postharvest firmness changes as measured by acoustic and low-mass impact devices: a comparison of techniques Postharvest Biology and Technology 41, 275284.

    • Search Google Scholar
    • Export Citation
  • DeEll, J.R., Prange, R.K., Murr, D.P., 1996. Chlorophyll fluorescence of Delicious apples at harvest as a potential predictor of superficial scald development during storage Postharvest Biology and Technology 9, 16.

    • Search Google Scholar
    • Export Citation
  • DeEll, J.R., Toivonen, P.M.A., 2000. Chlorophyll fluorescence as an indicator of broccoli quality during storage in modified atmosphere packaging HortScience 35, 256259.

    • Search Google Scholar
    • Export Citation
  • Delwiche, M., McDonald, T., Bowers, S.V., 1987. Determination of peach firmness by analysis of impact forces Transactions of the ASAE 30, 249254.

    • Search Google Scholar
    • Export Citation
  • Diezma-Iglesias, B., Ruiz-Altisent, M., Barreiro, P., 2004. Detection of internal quality in seedless watermelon by ícoustic impulse response Biosystems Engineering 88, 221230.

    • Search Google Scholar
    • Export Citation
  • Diezma-Iglesias, B., Valero, C., García-Ramos, F.J., Ruiz-Altisent, M., 2006. Monitoring of firmness evolution of peaches during storage by combining acoustic and impact methods Journal of Food Engineering 77, 926935.

    • Search Google Scholar
    • Export Citation
  • Elbatawi, I.E., 2008. An acoustic impact method to detect hollow heart of potato tubers Biosystems Engineering 100, 206213.

  • Fan, L., Song, J., Forney, C.F., Jordan, M.A., 2011. Fruit maturity affects the response of apples to heat stress Postharvest Biology and Technology 62, 3542.

    • Search Google Scholar
    • Export Citation
  • Felföldi, J., 1996. Firmness assessment of fruits and vegetables based on acoustic parameters Journal of Food Physics 58, 3947.

  • Felföldi, J., Fekete, A., 2000. Firmness assessment by impact method, ASAE Annual International Meeting, Milwaukee.

  • Funamoto, Y., Yamauchi, N., Shigenaga, T., Shigyo, M., 2002. Effects of heat treatment on chlorophyll degrading enzymes in stored broccoli (Brassica oleracea L.) Postharvest Biology and Technology 24, 163170.

    • Search Google Scholar
    • Export Citation
  • Gómez, A.H., Wang, J., Pereira, A.G., 2005. Impulse response of pear fruit and its relation to Magness-Taylor firmness during storage Postharvest Biology and Technology 35, 209215.

    • Search Google Scholar
    • Export Citation
  • Herppich, W.B., 2001. Application potential of chlorophyll fluorescence imaging analysis in horticultural research, 6th International Symposium: Fruit, Nut and Vegetable Production Engineering, Potsdam, Germany, pp. 609614.

    • Search Google Scholar
    • Export Citation
  • Hitka, G., 2011. Development of the controlled atmosphere storage technology of apricot. Corvinus University of Budapest, Budapest, Hungary.

    • Search Google Scholar
    • Export Citation
  • Kosson, R., 2003. Chlorophyll fluorescence and chilling injury of green pepper as affected by storage conditions Acta Horticulturae 628, 379385.

    • Search Google Scholar
    • Export Citation
  • Krause, G.H., Weis, E., 1991. Chlorophyll fluorescence and photosynthesis: the basics Annual Review of Plant Physiology and Plant Molecular Biology 42, 313349.

    • Search Google Scholar
    • Export Citation
  • Lu, R., 2004. Multispectral imaging for predicting firmness and soluble solids content of apple fruit Postharvest Biology and Technology 31, 147157.

    • Search Google Scholar
    • Export Citation
  • Mattheis, J.P., Rudell, D., 2011. Responses of d'Anjou' pear (Pyrus communis L.) fruit to storage at low oxygen setpoints determined by monitoring fruit chlorophyll fluorescence Postharvest Biology and Technology 60, 125129.

    • Search Google Scholar
    • Export Citation
  • Maxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence –a practical guide Journal of Experimental Botany 51, 659668.

  • Mitcham, E.J., Crisosto, C.H., Kader, A.A., 1996. Pear, Anjou, Bosc, Comice: Recommendations for maintaining postharvest quality. Department of Plant Sciences, University of California, Davis, Available at: http://postharvest.ucdavis.edu/PFfruits/PearAnjouBoscComice/, Accessed 31 October 2012.

    • Search Google Scholar
    • Export Citation
  • Molina-Delgado, D., Alegre, S., Barreiro, P., Valero, C., Ruiz-Altisent, M., Recasens, I., 2009. Addressing potential sources of variation in several non-destructive techniques for measuring firmness in apples Biosystems Engineering 104, 3346.

    • Search Google Scholar
    • Export Citation
  • Nedbal, L., Soukupova, J., Whitmarsh, J., Trtilek, M., 2000. Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality Photosynthetica 38, 571579.

    • Search Google Scholar
    • Export Citation
  • Peng, Y., Lu, R., 2006. Improving apple fruit firmness predictions by effective correction of multispectral scattering images Postharvest Biology and Technology 41, 266274.

    • Search Google Scholar
    • Export Citation
  • Peng, Y., Lu, R., 2007. Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images Journal of Food Engineering 82, 142152.

    • Search Google Scholar
    • Export Citation
  • Prange, R.K., DeLong, J.M., Leyte, J.C., Harrison, P.A., 2002. Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit Postharvest Biology and Technology 24, 201205.

    • Search Google Scholar
    • Export Citation
  • Purvis, A.C., 2002. Diphenylamine reduces chilling injury of green bell pepper fruit Postharvest Biology and Technology 25, 4148.

  • Qin, J., Lu, R., 2007. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging Appl. Spectrosc. 61, 388396.

    • Search Google Scholar
    • Export Citation
  • Qin, J., Lu, R., 2008. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique Postharvest Biology and Technology 49, 355365.

    • Search Google Scholar
    • Export Citation
  • Qin, J., Lu, R., 2009. Monte Carlo simulation for quantification of light transport features in apples Computers and Electronics in Agriculture 68, 4451.

    • Search Google Scholar
    • Export Citation
  • Ragni, L., Berardinelli, A., Guarnieri, A., 2010. Impact device for measuring the flesh firmness of kiwifruits Journal of Food Engineering 96, 591597.

    • Search Google Scholar
    • Export Citation
  • Romano, G., Argyropoulos, D., Nagle, M., Khan, M.T., Müller, J., 2012a. Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. Journal of Food Engineering 109, 438448.

    • Search Google Scholar
    • Export Citation
  • Romano, G., Baranyai, L., Gottschalk, K., Zude, M., 2008. An approach for monitoring the moisture content changes of drying banana slices with laser light backscattering imaging Food and Bioprocess Technology 14, 410414.

    • Search Google Scholar
    • Export Citation
  • Romano, G., Nagle, M., Argyropoulos, D., Müller, J., 2011. Laser light backscattering to monitor moisture content, soluble solid content and hardness of apple tissue during drying Journal of Food Engineering 104, 657662.

    • Search Google Scholar
    • Export Citation
  • Romano, G., Nagle, M., Müller, J., 2012b. Monitoring physical parameters of tropical fruits suring drying by application of laser light in the VIS/NIR spectrum, CIGRAgEng Valencia, Spain.

    • Search Google Scholar
    • Export Citation
  • Saquet, A.A., Streif, J., 2002. Chlorophyll fluorescence as a predictive method for detection of browning disorders in Conference pears during controlled atmosphere storage Acta Horticulturae 596, 863866.

    • Search Google Scholar
    • Export Citation
  • Schotte, S., De Belie, N., De Baerdemaeker, J., 1999. Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit Postharvest Biology and Technology 17, 105115.

    • Search Google Scholar
    • Export Citation
  • Taniwaki, M., Hanada, T., Sakurai, N., 2009a. Postharvest quality evaluation of "Fuyu" and "Taishuu" persimmons using a nondestructive vibrational method and an acoustic vibration technique. Postharvest Biology and Technology 51, 8085.

    • Search Google Scholar
    • Export Citation
  • Taniwaki, M., Hanada, T., Tohro, M., Sakurai, N., 2009b. Non-destructive determination of the optimum eating ripeness of pears and their texture measurements using acoustical vibration techniques. Postharvest Biology and Technology 51, 305310.

    • Search Google Scholar
    • Export Citation
  • Taniwaki, M., Takahashi, M., Sakurai, N., 2009c. Determination of optimum ripeness for edibility of postharvest melons using nondestructive vibration. Food Research International 42, 137141.

    • Search Google Scholar
    • Export Citation
  • Tijskens, L.M.M., van Kooten, O., Otma, E.C., 1994. Photosystem 2 quantum yield as a measure of radical scavengers in chilling injury in cucumber fruits and bell peppers Planta 194, 478486.

    • Search Google Scholar
    • Export Citation
  • Valente, M., Leardi, R., Self, G., Luciano, G., Pain, J.P., 2009. Multivariate calibration of mango firmness using vis/NIR spectroscopy and acoustic impulse method Journal of Food Engineering 94, 713.

    • Search Google Scholar
    • Export Citation
  • van Kooten, O., Snel, J., 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology Photosynth Res. 25, 147150.

    • Search Google Scholar
    • Export Citation
  • von Willert, D.J., Matyssek, R., Herppich, W., 1995. Experimentelle Pflanzenökologie. Grundlagen und Anwendungen Thieme, Stuttgart, Germany.

  • Wanitchang, P., Terdwongworakul, A., Wanitchang, J., Nakawajana, N., 2011. Nondestructive maturity classification of mango based on physical, mechanical and optical properties Journal of Food Engineering 105, 477484.

    • Search Google Scholar
    • Export Citation
  • Woolf, A.B., Laing, W.A., 1996. Avocado fruit skin fluorescence following hot water treatments and pretreatments J. Amer. Soc. Hort. Sci. 121, 147151.

    • Search Google Scholar
    • Export Citation
  • Wright, H., DeLong, J., Harrison, P.A., Gunawardena, A.H.L.A.N., Prange, R., 2010. The effect of temperature and other factors on chlorophyll a fluorescence and the lower oxygen limit in apples (Malus domestica) Postharvest Biology and Technology 55, 2128.

    • Search Google Scholar
    • Export Citation
  • Yang, X., Song, J., Fillmore, S., Pang, X., Zhang, Z., 2011. Effect of high temperature on color, chlorophyll fluorescence and volatile biosynthesis in green-ripe banana fruit Postharvest Biology and Technology 62, 246257.

    • Search Google Scholar
    • Export Citation
  • Zsom-Muha, V., Felfödi, J., 2007. Vibration behavior of long shape vegetables Progress in Agricultural Engineering Sciences 3, 2146.

  • Zsom, T., Zsom-Muha, V., Baranyai, L., Herppich, W.B., Felföldi, J., Balla, C., 2010. Nondestructive determination of post-harvest ripening of capsicum × annum Kárpia' Acta Horticulturae 858, 407412.

    • Search Google Scholar
    • Export Citation

 

 

The author instruction is available in PDF.
Please, download the file from HERE.

 

 

Senior editors

Editor(s)-in-Chief: Felföldi, József

Chair of the Editorial Board Szendrő, Péter

Editorial Board

  • Beke, János (Szent István University, Faculty of Mechanical Engineerin, Gödöllő – Hungary)
  • Fenyvesi, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Szendrő, Péter (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Felföldi, József (Szent István University, Faculty of Food Science, Budapest – Hungary)

 

Advisory Board

  • De Baerdemaeker, Josse (KU Leuven, Faculty of Bioscience Engineering, Leuven - Belgium)
  • Funk, David B. (United States Department of Agriculture | USDA • Grain Inspection, Packers and Stockyards Administration (GIPSA), Kansas City – USA
  • Geyer, Martin (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Horticultural Engineering, Potsdam - Germany)
  • Janik, József (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Kutzbach, Heinz D. (Institut für Agrartechnik, Fg. Grundlagen der Agrartechnik, Universität Hohenheim – Germany)
  • Mizrach, Amos (Institute of Agricultural Engineering. ARO, the Volcani Center, Bet Dagan – Israel)
  • Neményi, Miklós (Széchenyi University, Department of Biosystems and Food Engineering, Győr – Hungary)
  • Schulze-Lammers, Peter (University of Bonn, Institute of Agricultural Engineering (ILT), Bonn – Germany)
  • Sitkei, György (University of Sopron, Institute of Wood Engineering, Sopron – Hungary)
  • Sun, Da-Wen (University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Dublin – Ireland)
  • Tóth, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)

Prof. Felföldi, József
Institute: Physics-Control Department, Szent István University
Address: 1118 Budapest Somlói út 14-16
Phone: +36 1 305 7206
E-mail: Felfoldi.Jozsef@etk.szie.hu

Indexing and Abstracting Services:

  • CABI

2019  
Scimago
H-index
6
Scimago
Journal Rank
0,123
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q4
Mechanical Engineering Q4
Scopus
Cite Score
18/33=0,5
Scopus
Cite Score Rank
Environmental Engineering 108/132 (Q4)
Industrial and Manufacturing Engineering 242/340 (Q3)
Mechanical Engineering 481/585 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
13
Scopus
Documents
5

 

Progress in Agricultural Engineering Sciences
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 145 EUR / 181 USD
Print + online subscription: 168 EUR / 210 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Progress in Agricultural Engineering Sciences
Language English
Size B5
Year of
Foundation
2004
Publication
Programme
2021 Volume 17
Volumes
per Year
1
Issues
per Year
1
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-335X (Print)
ISSN 1787-0321 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 7 0 0
Feb 2021 4 0 0
Mar 2021 4 1 3
Apr 2021 10 0 0
May 2021 5 2 2
Jun 2021 5 0 0
Jul 2021 0 0 0