Authors:
Bellahsen Naoufal Doctoral School of Environmental Sciences, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 9.

Search for other papers by Bellahsen Naoufal in
Current site
Google Scholar
PubMed
Close
,
Kertész Szabolcs Department of Process Engineering, Faculty of Engineering, University of Szeged, H-6725 Szeged, Moszkvai krt. 9.

Search for other papers by Kertész Szabolcs in
Current site
Google Scholar
PubMed
Close
,
Pásztory Zoltán Innovation Center, Simonyi Károly Faculty of Engineering, Wood Sciences and Applied Arts, University of Sopron, 9400 Sopron, Bajcsy-Zsilinszky u. 4.

Search for other papers by Pásztory Zoltán in
Current site
Google Scholar
PubMed
Close
, and
Hodúr Cecilia Department of Process Engineering, Faculty of Engineering, University of Szeged, H-6725 Szeged, Moszkvai krt. 9.

Search for other papers by Hodúr Cecilia in
Current site
Google Scholar
PubMed
Close
Restricted access

Nutrient removal has become one of the key challenges for wastewater treatment facilities all over the world due to the harmful effect of these pollutants on water bodies and ecosystems known by eutrophication, however, most of the currently used technologies are not focused on nutrients recovery from wastewater. Recently, using agricultural waste/by-products for adsorption of nutrients acquired more interest because of their abundant availability, low-cost, high efficiency and eco-friendly advantages and this method may become more environmentally sustainable through maximizing removal while delivering nutrient and energy recovery technologies with economically attractive return on investment.

This review investigates the application of agricultural waste/by-products as bio-sorbent for phosphate, ammonium and nitrate removal with a focus on the modification methods and the process mechanism including influent parameters, kinetics and isotherms.

  • Abdul, A., Aberuagba, F. (2005) Comparative study of the adsorption of phosphate byactivated charcoal from corncobs, groundnut shells and rice-husks. AU J.T. 9(1): 5963.

    • Search Google Scholar
    • Export Citation
  • Acevedo, B., Barriocanal, C. (2015) Simultaneous adsorption of Cd2+ and reactive dye on mesoporous nanocarbons. RSC Advances 5(115).

  • Akmil-Basar, Y., Onal, T., Kilicer, D., (2005) Adsorptions of high concentration malachite green by two activated carbon having different porous structures. J. Hazard Mater 127(1–3): 7380.

    • Search Google Scholar
    • Export Citation
  • Alam, J. B., Dikshit, A. K., Bandyopadhayay, M. (2005) Evaluation of thermodynamic properties of sorption of 2, 4-D and atrazine by tire rubber granules. Sep Purif Technol. 42: 8590.

    • Search Google Scholar
    • Export Citation
  • Aman, T. A., Kazi, A., Sabri, M. U., Bano Q. (2008) Potato peels as solid waste for the removal of heavy metal copper (II) from wastewater/industrial. Colloids Surf B Biointerfaces. 63(1): 116121.

    • Search Google Scholar
    • Export Citation
  • Anastopoulou, I., Kyzas, Z. G. (2014) Agricultural peel for dyes adsorption: a review of recent literature. Journal of Molecular Liquids. 200: 381389.

    • Search Google Scholar
    • Export Citation
  • Andrew, N., Sharpley, R., McDowell, W., Kleinman, J. A. (2001) Phosphorus loss from land to water: integrating agricultural and environmental management. Plant and Soil 237: 287307.

    • Search Google Scholar
    • Export Citation
  • Anirudhan, T. S., Noeline, F., Manohar, D. M. (2006) Phosphate removal from wastewater using a weak anion exchanger prepared from lignocellulosic residue. Environ. Sci. Technol. 40: 27402745.

    • Search Google Scholar
    • Export Citation
  • Annadurai, G., Lee, D.-J. (2002) Use of cellulose based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater 92(3): 263274.

    • Search Google Scholar
    • Export Citation
  • Aslan, S., Turkman, A. (2003) Biological denitrification of drinking water using various natural organic solid substrates. Water Science and Technology 48(11–12): 489495.

    • Search Google Scholar
    • Export Citation
  • Aygun, A. (2003) Production of granular activated carbon from fruit stone and nutshells and evaluation of their physical, chemical, and adsorption properties. Microporous and Mesoporous Materials 66(2–3): 189195.

    • Search Google Scholar
    • Export Citation
  • Bellona, C., Drewes, J. E. Oelker, G., Luna, J., Filteau, G., Amy, G. (2008) Comparing nanofiltration and reverse osmosis for drinking water augmentation. Journal American Water Works Association 100(9): 102116.

    • Search Google Scholar
    • Export Citation
  • Beltrán, J., Dominguez, J. R., Cano, Y., Jimenez, I. (2006) Nitrate removal from drinking water using amberlite IRN-78: Modelling the system. Applied Surface Science 252(17): 60316035.

    • Search Google Scholar
    • Export Citation
  • Benyoucef, K., Amrani, C. (2011) Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination 275(1): 231236.

  • Bernhard, A. (2010) The nitrogen cycle: Processes, players, and human impact. Nature Education Knowledge 3(10): 25.

  • Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., Kawakita, H. (2008) Removal and recovery of phosphate from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresour. Technol. 99: 86858690.

    • Search Google Scholar
    • Export Citation
  • Bitton, G. (2011) Wastewater Microbiology. 4th Edition. United Kingdom, WileyBlackwell.

  • Boyer, T. H., Persaud, A., Banerjee, P., Palomino, P. (2011) Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water. Water Res. 45(16): 48034814.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-H., Wang, J.-Z., Wang, J., Xie, J.-J., Zhu, C.-Z., Zhan, X.-M. (2014) Phosphorus removal from aqueous solutions containing low concentration of phosphate using pyrite calcinate sorbent. International Journal of Environmental Science and Technology 12: 885892.

    • Search Google Scholar
    • Export Citation
  • Cordell, D., Rosemarin , A., Schröder, J. J., Smit, A. L. (2011) Toward global phosphorus security: A systems framework for phosphorus recovery and reuse options. DOI: 10.1016/j.chemosphere.2011.02.032.

    • Search Google Scholar
    • Export Citation
  • Myers, D. (1999) Surfaces, Interfaces, and Colloids, Principles and Applications, 2nd ed. Wiley.

  • De-Bashan, L. E., Bashan, Y. (2004) Recent advances in removing phosphorous from wastewater and its future use as fertilizer (1997–2003). Water Res. 38(19): 42224246.

    • Search Google Scholar
    • Export Citation
  • De Lima, A. C. A., Nascimento, R., de Sousa, F. F., Filho, J. M. (2012) Modified coconut shell fibers: a green and economical sorbent for the removal of anions from aqueous solutions. Chem. Eng. J. 185–186: 274284.

    • Search Google Scholar
    • Export Citation
  • Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z. (2014) Adsorption of rhodamine-B from aqueous solution using treated rice husk based activated carbon. Colloids and Surfaces A Physicochemical and Engineering Aspects. 446: 17.

    • Search Google Scholar
    • Export Citation
  • Divya, M., Jyothi, K., Rohini, K., Ravindhranath, K. (2012) Phosphate pollution control in waste waters using new bio-sorbents. International Journal of Water Resources and Environmental Engineering. 4(4): 7385.

    • Search Google Scholar
    • Export Citation
  • Douven, S., Paez, C. A., Gommes, C. J. (2015) The range of validity of sorption kinetic models. J.Colloid Interface Sci. 448: 437450.

    • Search Google Scholar
    • Export Citation
  • Du, Q., Liu, S., Cao, Z., Wang, Y. (2005) Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and Purification Technology 44(3): 229234.

    • Search Google Scholar
    • Export Citation
  • Eckhard, W. (2012) Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling. Walter de Gruyter GmbH & Co. KG, Berlin/Boston. El

    • Search Google Scholar
    • Export Citation
  • Haddad, M., Slimani, R., Mamouni El Antri, S., Lazar, S. (2013) Removal of two textile dyes from aqueous solutions onto calcined bones. Journal of the Association of Arab Universities for Basic & Applied Sciences 14 (1): 5159.

    • Search Google Scholar
    • Export Citation
  • Englert, A. H., Rubio, J. (2005) Characterization and environmental application of a Chilean natural zeolite. Int. J. Miner. Process. 75: 2129

    • Search Google Scholar
    • Export Citation
  • Fiol, N. M., Martínez, N., Miralles, J., Po, C. H., Serarols, J. (2006) Sorption of Pb (II), Ni (II), Cu (II) andCd (II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50(1): 132140.

    • Search Google Scholar
    • Export Citation
  • Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., Ismadji, S. (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbents: a summary of recent studies. J. Hazard. Mater. 162(2–3): 616645.

    • Search Google Scholar
    • Export Citation
  • Gerardo, M. L., Zacharof, M. P., Lovitt, R. W. (2013) Strategies for the recovery of nutrients and metals from anaerobically digested dairy farm sludge using cross-flow microfiltration. Water Res. 47(14): 48334842.

    • Search Google Scholar
    • Export Citation
  • Hamoudi, S., Rabih, S., Belkacemi, K. (2007) Adsorptive removal of phosphate and nitrate anions from aqueous solutions using ammonium-functionalized mesoporous silica. Industrial & Engineering Chemistry Research 46(25).

    • Search Google Scholar
    • Export Citation
  • Hasanoğlu, A., Romero, J., Pérez, B., Plaza, A. (2010) Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chemical Engineering Journal 165 (3): 530537.

    • Search Google Scholar
    • Export Citation
  • Ho, Y. S. (2004) Comment on “An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg (II) with thin chitosan membranes”. J. Colloid. Interface Sci. 272(1): 249250.

    • Search Google Scholar
    • Export Citation
  • Huang, J., Shang, C. (2006) Air Stripping. Handbook of Environmental Engineering: Advanced Physicochemical Treatment Processes (4): 4779.

    • Search Google Scholar
    • Export Citation
  • Hussein, D. Z. (2013) Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel. Desalination and Water treatment 51(3436).

    • Search Google Scholar
    • Export Citation
  • Ismail, Z. Z. (2012) Kinetic study for phosphate removal from waste water by recycled datepalm wastes as agricultural by-products. Int. J. Environ. Stud. 69: 135149.

    • Search Google Scholar
    • Export Citation
  • Juang, R. S., Tseng, R. L., Wu, F. C. (2001) Role of microporous activated carbons on their adsorption abilities for phenols and dyes. Adsorption 7(1): 6572.

    • Search Google Scholar
    • Export Citation
  • Jutidarongphan, W., Park, K. Y., Dockko, S., Choi, J. W., Lee, S. H. (2012) High removal of phosphate from wastewater using silica sulphate. Environ. Chem. 10: 2128.

    • Search Google Scholar
    • Export Citation
  • Kartal, B., Kuenen, J., van Loosdrecht, M. (2010) Sewage treatment with anammox. Science 328(5979): 702703.

  • Krishnan, K. A., Haridas, A. (2008) Removal of phosphate from aqueous solution and sewage using natural and surface modified coir pith J. Hazard. Mater 152: 527535.

    • Search Google Scholar
    • Export Citation
  • Kumar, P., Sudha, S., Shri, C., Srivastava, V. C. (2010) Phosphate removal from aqueous solution using coir-pith activated carbon. Separation Science and Technology 45(10): 14631470.

    • Search Google Scholar
    • Export Citation
  • Kumar, P. S., Ramalingam, S., Kirupha, S. D., Muruge, A. (2011) Adsorption behaviour of nickel (II) onto cashew nutshell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal 167: 122131.

    • Search Google Scholar
    • Export Citation
  • Kuntke, P., Geleji, M., Bruning, H., Zeeman, G., Hamelers, H. V. M., Buisman, C. J. N. (2011) Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Bioresour. Technol. 102(6): 43764382.

    • Search Google Scholar
    • Export Citation
  • Kurama, H., Poetzschke, J., Haseneder, R. (2002) The application of membrane filtration for the removal of ammonium ions from potable water. Water Res. 36(11): 29052909.

    • Search Google Scholar
    • Export Citation
  • Largitte, L., Pasquier, R. (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design 109: 495504

    • Search Google Scholar
    • Export Citation
  • Puckett, L. J. (1994) Nonpoint and point sources of nitrogen in major watersheds of the United States. U.S. Geological Survey Water-Resources Investigations Report 944001.

    • Search Google Scholar
    • Export Citation
  • Leng, H. N., Chen, Y. T., Duan, H. P., Rao, L. B., Wang, Y. J., Hu, Y. X. (2009) Effects of phosphorus stress on the growth and nitrogen and phosphorus absorption of different Formosan sweet gum provenances. Ying Yong Sheng Tai Xue Bao 20(4): 754760.

    • Search Google Scholar
    • Export Citation
  • Li, M., Zhu, X., Zhu, F., Ren, G., Cao, G., Song, L. (2011) Application of modified zeolite for ammonium removal from drinking water. Desalination 271: 295300.

    • Search Google Scholar
    • Export Citation
  • Li, X., Tang, Y., Xuan, Z., Liu, Y., Luo, F., (2007) Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Sep. Purif. Technol. 55(1): 6975.

    • Search Google Scholar
    • Export Citation
  • Liu, W. Y., Liu, Y. Tao, Y.Yu. (2014) Comparative study of adsorption of Pb (II) on native garlic peel and mercerized garlic peel. Environ. Sci. Pollut. Res. 21(3): 20542063.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Jianyong, L., Wan, L., Zhou, Q., Wang, X. (2012) Batch and fixed-bed column performance of phosphate adsorption by lanthanum-doped activated carbon fiber. Water Air and Soil Pollution 223(9).

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Xue, Y., Gao, F., Cheng, X., Yang, K. (2016) Removal of ammonium from aqueous solutions using alkali-modified biochars. Chem. Speciat. Bioavailab. 28: 2632.

    • Search Google Scholar
    • Export Citation
  • Malash, G. F., El-Khaiary, M. I. (2011) Methylene blue adsorption by the waste of Abu- Tartour phosphate rock. J. Colloid. Interface. Sci. 348(2): 537545.

    • Search Google Scholar
    • Export Citation
  • Marshall, W.E., Wartelle, L. H. (2004) An anion exchange resin from soybean hulls. J. Chem. Technol. Biotechnol. 79: 12861292.

  • Malovanyy, A., Sakalova, H., Yatchyshyn, Y., Plaza, E., Malovanyy, M. (2013) Concentration of ammonium from municipal wastewater using ion exchange process. Desalination 329: 93102.

    • Search Google Scholar
    • Export Citation
  • Moghadam, M., Nasirizadeh, N., Dashti, Z., Abanezhad, E. B. (2013) Removal of Fe (II) from aqueous solution using pomegranate peel carbon: equilibrium and kinetic studies. Int. J. Ind. Chem. 4: 19.

    • Search Google Scholar
    • Export Citation
  • Mondor, M., Masse, L., Ippersiel, D., Lamarche, F. (2008) Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresource Technology 99(15): 73637368.

    • Search Google Scholar
    • Export Citation
  • Namasivayam, C., Radhika, R., Suba, S. (2001) Uptake of dyes by a promising locally available agricultural solid waste: coir pith. Waste Manag. 21(4): 381387.

    • Search Google Scholar
    • Export Citation
  • Nataraj, S. K., Hosamani, K. M., Aminabhavi, T. M. (2006) Electrodialytic removal of nitrates and hardness from simulated mixtures using ion-exchange membranes. Journal of Applied Polymer Science 99(4): 17881794.

    • Search Google Scholar
    • Export Citation
  • Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Yue, Q. Y., Li, Q., Nguyen, T. V. (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology 148: 574585.

    • Search Google Scholar
    • Export Citation
  • Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J., Nguyen, P. D., Bui, X. T. (2014) Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles. Bioresource Technology 169: 750776.

    • Search Google Scholar
    • Export Citation
  • Orlando, U. S., Baes, A. U., Nishijima, W., Okada, M. (2002) Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity. Chemosphere 48 (10): 10411046.

    • Search Google Scholar
    • Export Citation
  • Paripurnanda, L., Saravanamuthu, V., Jaya, K. (2013) Nitrate removal from water using surface-modified adsorbets. Journal of Environmental Management 131: 363374.

    • Search Google Scholar
    • Export Citation
  • Pehlivan, E., Altun, T., Parlayici, S. (2012) Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem. 135(4): 2934.

    • Search Google Scholar
    • Export Citation
  • Peleka, E. N., Deliyanni, E. A. (2009) Adsorptive removal of phosphates from aqueous solutions. Desalination 245: 357371.

  • Post, J., Petta, L., Kramer A., Baz, I. A. (2008) EM water guide and recommendations on wastewater treatment and water reuse. Efficient Management of Wastewater 15: 1928.

    • Search Google Scholar
    • Export Citation
  • Pressley, T., Bishop, D., Roan, S. (1972) Ammonia-Nitrogen Removal by Breakpoint Chlorination, Department of the Interior, Federal Water Quality Administration, Advanced Waste Treatment Research Laboratory Robert A. Taft Water Research Center, Cincinnati OH, United States.

    • Search Google Scholar
    • Export Citation
  • Romano, N., Zeng, C. (2013) Toxic effects of ammonia, nitrite, and nitrate to decapod crustaceans: A review on factors influencing their toxicity, physiological consequences, and coping mechanisms. Fisheries Science 21(1).

    • Search Google Scholar
    • Export Citation
  • Rihani, K., Thayer, B. B., Mammou, A. B., Ammar, A. B. (2009) Biosorption characteristics of phosphate from aqueous solution onto phoenix dactylifera datepalm fibbers. J. Hazard. Mater. 170: 511519.

    • Search Google Scholar
    • Export Citation
  • Roginsky, R., Zeldovich, A. (1967) The Elovich equation in chemisorption kinetics. Nature 216: 12041205.

  • Rudzinski, W., Plazinski, W. (2009) Applicability of the pseudo-second order equation to represent the kinetics of adsorption at solid/solution interfaces: a theoretical analysis based on the statistical rate theory. Adsorption 15(2): 181192.

    • Search Google Scholar
    • Export Citation
  • Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, C., Van Drecht, G. (2006) Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications 16(6): 20642090.

    • Search Google Scholar
    • Export Citation
  • Shuxia, Y. X., Ma, D., Ellis E. (2007) Initial stages of H2O adsorption and hydroxylation of Fe-terminated α-Fe2O3 surface. J. Surface science 601(12): 24262437.

    • Search Google Scholar
    • Export Citation
  • Slimani, R., Anouzla, A., Abrouki, Y., Ramli, Y., El Antri, S., Mamouni, R., Lazar, S., El Haddad, M. (2011) Removal of a cationic dye – Methylene Blue – from aqueous media by the use of animal bone meal as a new low cost adsorbent. J. Mater. Environ. Sci. 2(1): 7787.

    • Search Google Scholar
    • Export Citation
  • Sotelo, J. L., Ovejero, G., Rodríguez, A., Álvarez, S., García, J. (2013) Study of natural clay adsorbent sepiolite for the removal of caffeine from aqueous solutions: Batch and fixed-bed column operation. Water, Air, & Soil Pollution 224(3).

    • Search Google Scholar
    • Export Citation
  • Strom, F. (2006) Technologies to Remove Phosphorus from Wastewater Water. Rutgers.

  • Sulyman, M., Namiesnik, J., Gierak, A. (2017) Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: A Review. Pol. J. Environ. 26(2): 479510.

    • Search Google Scholar
    • Export Citation
  • Tasaso, P. (2014) Adsorption of copper using pomelo peel and depectinated pomelo peel. Journal of Clean Energy Technologies 2: 2.

  • Tchobanoglous, G., Franklin, L., Burton, H., Stensel, S. (2003) Wastewater Engineering (Treatment Disposal Reuse). Metcalf & Eddy, Inc. (4th ed.). McGraw-Hill Book Company. U.S.A.

    • Search Google Scholar
    • Export Citation
  • Teng, C. C., Gaw-Hao, H., Chia-Hsun, L., Chuh-Shun, C., Shun-Hsing, C., Yao-Hui, H. (2013) Novel effective waste iron oxide-coated magnetic adsorbent for phosphate adsorption. J. Desalination and Water Treatment 52: 766774.

    • Search Google Scholar
    • Export Citation
  • Thinakaran, N., Panneerse, P., Baskaralingam, P., Elango, D., Sivanesan, S. (2008) Equilibrium and kinetic studies on the removal of acid red from aqueous solutions using activated carbons prepared from seed shells. J. Hazard. Mater. 158(1): 142150.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., Eberhardt, L., Soo-Hong, M. (2008) Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption. Bioresource Technology 99: 626630.

    • Search Google Scholar
    • Export Citation
  • Tombácz, E. (2002) Adsorption from Electrolyte Solutions: Adsorption Theory, Modeling, and Analysis (Marcel Dekker).

  • Valix, M., Cheung, W. H., McKay, G. (2004) Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere 56(5): 493501.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Gao, B., Yue, Q., Zhong, Q. (2011) Sorption of phosphate onto giant reed based adsorbent: FTIR, Raman spectrum analysis and dynamic sorption desorption properties in filter bed. Bioresource Technol. 102: 52785282.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Tan, Y. B., Zhao, X., Yue, Y.-Q., Wang, Q. Y. (2011) Characteristics of diethylenetriamine- crosslinked cotton stalk/wheat stalk and their biosorption capacities for phosphate. J. Hazard. Mater. 192(3): 16901696.

    • Search Google Scholar
    • Export Citation
  • Ho, Y. S., McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry 34: 451465.

  • Yang, G. C., Lee, H. (2005) Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Res. 39(5): 884894.

  • Zare, K., Sadegh, H., Shahryari, R., Asif, M., Tyagi, I., Agarwal, S., Gupta, V. K. (2016) Equilibrium and kinetic study of ammonium ion adsorption by Fe3O4 nanoparticles from aqueous solutions. J. Mol. Liq. 213: 345350.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Shan, W., Ge, J., Shen, Z., Lei, Y., Wang, W. (2012) Kinetic and equilibrium studies of liquid phase adsorption of phosphate on modified sugarcane bagasse. Environ. Eng. 138: 252258.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Felföldi, József

Chair of the Editorial Board Szendrő, Péter

Editorial Board

  • Beke, János (Szent István University, Faculty of Mechanical Engineerin, Gödöllő – Hungary)
  • Fenyvesi, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Szendrő, Péter (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Felföldi, József (Szent István University, Faculty of Food Science, Budapest – Hungary)

 

Advisory Board

  • De Baerdemaeker, Josse (KU Leuven, Faculty of Bioscience Engineering, Leuven - Belgium)
  • Funk, David B. (United States Department of Agriculture | USDA • Grain Inspection, Packers and Stockyards Administration (GIPSA), Kansas City – USA
  • Geyer, Martin (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Horticultural Engineering, Potsdam - Germany)
  • Janik, József (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Kutzbach, Heinz D. (Institut für Agrartechnik, Fg. Grundlagen der Agrartechnik, Universität Hohenheim – Germany)
  • Mizrach, Amos (Institute of Agricultural Engineering. ARO, the Volcani Center, Bet Dagan – Israel)
  • Neményi, Miklós (Széchenyi University, Department of Biosystems and Food Engineering, Győr – Hungary)
  • Schulze-Lammers, Peter (University of Bonn, Institute of Agricultural Engineering (ILT), Bonn – Germany)
  • Sitkei, György (University of Sopron, Institute of Wood Engineering, Sopron – Hungary)
  • Sun, Da-Wen (University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Dublin – Ireland)
  • Tóth, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)

Prof. Felföldi, József
Institute: MATE - Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Measurements and Process Control
Address: 1118 Budapest Somlói út 14-16
E-mail: felfoldi.jozsef@uni-mate.hu

Indexing and Abstracting Services:

  • CABI
  • ERIH PLUS
  • SCOPUS

2023  
Scopus  
CiteScore 1.8
CiteScore rank Q2 (General Agricultural and Biological Sciences)
SNIP 0.497
Scimago  
SJR index 0.258
SJR Q rank Q3

Progress in Agricultural Engineering Sciences
Publication Model Hybrid
Submission Fee none
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Article Processing Charge 900 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 173 EUR / 190 USD
Print + online subscription: 200 EUR / 220 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles can be purchased at the prices indicated.

Progress in Agricultural Engineering Sciences
Language English
Size B5
Year of
Foundation
2004
Volumes
per Year
1
Issues
per Year
1
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-335X (Print)
ISSN 1787-0321 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 37 0 0
Aug 2024 73 0 0
Sep 2024 50 0 0
Oct 2024 352 0 0
Nov 2024 162 0 0
Dec 2024 75 0 0
Jan 2025 24 0 0