Nutrient removal has become one of the key challenges for wastewater treatment facilities all over the world due to the harmful effect of these pollutants on water bodies and ecosystems known by eutrophication, however, most of the currently used technologies are not focused on nutrients recovery from wastewater. Recently, using agricultural waste/by-products for adsorption of nutrients acquired more interest because of their abundant availability, low-cost, high efficiency and eco-friendly advantages and this method may become more environmentally sustainable through maximizing removal while delivering nutrient and energy recovery technologies with economically attractive return on investment.
This review investigates the application of agricultural waste/by-products as bio-sorbent for phosphate, ammonium and nitrate removal with a focus on the modification methods and the process mechanism including influent parameters, kinetics and isotherms.
Abdul, A., Aberuagba, F. (2005) Comparative study of the adsorption of phosphate byactivated charcoal from corncobs, groundnut shells and rice-husks. AU J.T. 9(1): 59–63.
Acevedo, B., Barriocanal, C. (2015) Simultaneous adsorption of Cd2+ and reactive dye on mesoporous nanocarbons. RSC Advances 5(115).
Akmil-Basar, Y., Onal, T., Kilicer, D., (2005) Adsorptions of high concentration malachite green by two activated carbon having different porous structures. J. Hazard Mater 127(1–3): 73–80.
Alam, J. B., Dikshit, A. K., Bandyopadhayay, M. (2005) Evaluation of thermodynamic properties of sorption of 2, 4-D and atrazine by tire rubber granules. Sep Purif Technol. 42: 85–90.
Aman, T. A., Kazi, A., Sabri, M. U., Bano Q. (2008) Potato peels as solid waste for the removal of heavy metal copper (II) from wastewater/industrial. Colloids Surf B Biointerfaces. 63(1): 116–121.
Anastopoulou, I., Kyzas, Z. G. (2014) Agricultural peel for dyes adsorption: a review of recent literature. Journal of Molecular Liquids. 200: 381–389.
Andrew, N., Sharpley, R., McDowell, W., Kleinman, J. A. (2001) Phosphorus loss from land to water: integrating agricultural and environmental management. Plant and Soil 237: 287–307.
Anirudhan, T. S., Noeline, F., Manohar, D. M. (2006) Phosphate removal from wastewater using a weak anion exchanger prepared from lignocellulosic residue. Environ. Sci. Technol. 40: 2740–2745.
Annadurai, G., Lee, D.-J. (2002) Use of cellulose based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater 92(3): 263–274.
Aslan, S., Turkman, A. (2003) Biological denitrification of drinking water using various natural organic solid substrates. Water Science and Technology 48(11–12): 489–495.
Aygun, A. (2003) Production of granular activated carbon from fruit stone and nutshells and evaluation of their physical, chemical, and adsorption properties. Microporous and Mesoporous Materials 66(2–3): 189–195.
Bellona, C., Drewes, J. E. Oelker, G., Luna, J., Filteau, G., Amy, G. (2008) Comparing nanofiltration and reverse osmosis for drinking water augmentation. Journal American Water Works Association 100(9): 102–116.
Beltrán, J., Dominguez, J. R., Cano, Y., Jimenez, I. (2006) Nitrate removal from drinking water using amberlite IRN-78: Modelling the system. Applied Surface Science 252(17): 6031–6035.
Benyoucef, K., Amrani, C. (2011) Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination 275(1): 231–236.
Bernhard, A. (2010) The nitrogen cycle: Processes, players, and human impact. Nature Education Knowledge 3(10): 25.
Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., Kawakita, H. (2008) Removal and recovery of phosphate from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresour. Technol. 99: 8685–8690.
Bitton, G. (2011) Wastewater Microbiology. 4th Edition. United Kingdom, WileyBlackwell.
Boyer, T. H., Persaud, A., Banerjee, P., Palomino, P. (2011) Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water. Water Res. 45(16): 4803–4814.
Chen, T.-H., Wang, J.-Z., Wang, J., Xie, J.-J., Zhu, C.-Z., Zhan, X.-M. (2014) Phosphorus removal from aqueous solutions containing low concentration of phosphate using pyrite calcinate sorbent. International Journal of Environmental Science and Technology 12: 885–892.
Cordell, D., Rosemarin , A., Schröder, J. J., Smit, A. L. (2011) Toward global phosphorus security: A systems framework for phosphorus recovery and reuse options. DOI: 10.1016/j.chemosphere.2011.02.032.
Myers, D. (1999) Surfaces, Interfaces, and Colloids, Principles and Applications, 2nd ed. Wiley.
De-Bashan, L. E., Bashan, Y. (2004) Recent advances in removing phosphorous from wastewater and its future use as fertilizer (1997–2003). Water Res. 38(19): 4222–4246.
De Lima, A. C. A., Nascimento, R., de Sousa, F. F., Filho, J. M. (2012) Modified coconut shell fibers: a green and economical sorbent for the removal of anions from aqueous solutions. Chem. Eng. J. 185–186: 274–284.
Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z. (2014) Adsorption of rhodamine-B from aqueous solution using treated rice husk based activated carbon. Colloids and Surfaces A Physicochemical and Engineering Aspects. 446: 1–7.
Divya, M., Jyothi, K., Rohini, K., Ravindhranath, K. (2012) Phosphate pollution control in waste waters using new bio-sorbents. International Journal of Water Resources and Environmental Engineering. 4(4): 73–85.
Douven, S., Paez, C. A., Gommes, C. J. (2015) The range of validity of sorption kinetic models. J.Colloid Interface Sci. 448: 437–450.
Du, Q., Liu, S., Cao, Z., Wang, Y. (2005) Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and Purification Technology 44(3): 229–234.
Eckhard, W. (2012) Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling. Walter de Gruyter GmbH & Co. KG, Berlin/Boston. El
Haddad, M., Slimani, R., Mamouni El Antri, S., Lazar, S. (2013) Removal of two textile dyes from aqueous solutions onto calcined bones. Journal of the Association of Arab Universities for Basic & Applied Sciences 14 (1): 51–59.
Englert, A. H., Rubio, J. (2005) Characterization and environmental application of a Chilean natural zeolite. Int. J. Miner. Process. 75: 21–29
Fiol, N. M., Martínez, N., Miralles, J., Po, C. H., Serarols, J. (2006) Sorption of Pb (II), Ni (II), Cu (II) andCd (II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50(1): 132–140.
Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., Ismadji, S. (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbents: a summary of recent studies. J. Hazard. Mater. 162(2–3): 616–645.
Gerardo, M. L., Zacharof, M. P., Lovitt, R. W. (2013) Strategies for the recovery of nutrients and metals from anaerobically digested dairy farm sludge using cross-flow microfiltration. Water Res. 47(14): 4833–4842.
Hamoudi, S., Rabih, S., Belkacemi, K. (2007) Adsorptive removal of phosphate and nitrate anions from aqueous solutions using ammonium-functionalized mesoporous silica. Industrial & Engineering Chemistry Research 46(25).
Hasanoğlu, A., Romero, J., Pérez, B., Plaza, A. (2010) Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chemical Engineering Journal 165 (3): 530–537.
Ho, Y. S. (2004) Comment on “An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg (II) with thin chitosan membranes”. J. Colloid. Interface Sci. 272(1): 249–250.
Huang, J., Shang, C. (2006) Air Stripping. Handbook of Environmental Engineering: Advanced Physicochemical Treatment Processes (4): 47–79.
Hussein, D. Z. (2013) Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel. Desalination and Water treatment 51(34–36).
Ismail, Z. Z. (2012) Kinetic study for phosphate removal from waste water by recycled datepalm wastes as agricultural by-products. Int. J. Environ. Stud. 69: 135–149.
Juang, R. S., Tseng, R. L., Wu, F. C. (2001) Role of microporous activated carbons on their adsorption abilities for phenols and dyes. Adsorption 7(1): 65–72.
Jutidarongphan, W., Park, K. Y., Dockko, S., Choi, J. W., Lee, S. H. (2012) High removal of phosphate from wastewater using silica sulphate. Environ. Chem. 10: 21–28.
Kartal, B., Kuenen, J., van Loosdrecht, M. (2010) Sewage treatment with anammox. Science 328(5979): 702–703.
Krishnan, K. A., Haridas, A. (2008) Removal of phosphate from aqueous solution and sewage using natural and surface modified coir pith J. Hazard. Mater 152: 527–535.
Kumar, P., Sudha, S., Shri, C., Srivastava, V. C. (2010) Phosphate removal from aqueous solution using coir-pith activated carbon. Separation Science and Technology 45(10): 1463–1470.
Kumar, P. S., Ramalingam, S., Kirupha, S. D., Muruge, A. (2011) Adsorption behaviour of nickel (II) onto cashew nutshell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal 167: 122–131.
Kuntke, P., Geleji, M., Bruning, H., Zeeman, G., Hamelers, H. V. M., Buisman, C. J. N. (2011) Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Bioresour. Technol. 102(6): 4376–4382.
Kurama, H., Poetzschke, J., Haseneder, R. (2002) The application of membrane filtration for the removal of ammonium ions from potable water. Water Res. 36(11): 2905–2909.
Largitte, L., Pasquier, R. (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design 109: 495–504
Puckett, L. J. (1994) Nonpoint and point sources of nitrogen in major watersheds of the United States. U.S. Geological Survey Water-Resources Investigations Report 94–4001.
Leng, H. N., Chen, Y. T., Duan, H. P., Rao, L. B., Wang, Y. J., Hu, Y. X. (2009) Effects of phosphorus stress on the growth and nitrogen and phosphorus absorption of different Formosan sweet gum provenances. Ying Yong Sheng Tai Xue Bao 20(4): 754–760.
Li, M., Zhu, X., Zhu, F., Ren, G., Cao, G., Song, L. (2011) Application of modified zeolite for ammonium removal from drinking water. Desalination 271: 295–300.
Li, X., Tang, Y., Xuan, Z., Liu, Y., Luo, F., (2007) Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Sep. Purif. Technol. 55(1): 69–75.
Liu, W. Y., Liu, Y. Tao, Y.Yu. (2014) Comparative study of adsorption of Pb (II) on native garlic peel and mercerized garlic peel. Environ. Sci. Pollut. Res. 21(3): 2054–2063.
Liu, Z., Jianyong, L., Wan, L., Zhou, Q., Wang, X. (2012) Batch and fixed-bed column performance of phosphate adsorption by lanthanum-doped activated carbon fiber. Water Air and Soil Pollution 223(9).
Liu, Z., Xue, Y., Gao, F., Cheng, X., Yang, K. (2016) Removal of ammonium from aqueous solutions using alkali-modified biochars. Chem. Speciat. Bioavailab. 28: 26–32.
Malash, G. F., El-Khaiary, M. I. (2011) Methylene blue adsorption by the waste of Abu- Tartour phosphate rock. J. Colloid. Interface. Sci. 348(2): 537–545.
Marshall, W.E., Wartelle, L. H. (2004) An anion exchange resin from soybean hulls. J. Chem. Technol. Biotechnol. 79: 1286–1292.
Malovanyy, A., Sakalova, H., Yatchyshyn, Y., Plaza, E., Malovanyy, M. (2013) Concentration of ammonium from municipal wastewater using ion exchange process. Desalination 329: 93–102.
Moghadam, M., Nasirizadeh, N., Dashti, Z., Abanezhad, E. B. (2013) Removal of Fe (II) from aqueous solution using pomegranate peel carbon: equilibrium and kinetic studies. Int. J. Ind. Chem. 4: 19.
Mondor, M., Masse, L., Ippersiel, D., Lamarche, F. (2008) Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresource Technology 99(15): 7363–7368.
Namasivayam, C., Radhika, R., Suba, S. (2001) Uptake of dyes by a promising locally available agricultural solid waste: coir pith. Waste Manag. 21(4): 381–387.
Nataraj, S. K., Hosamani, K. M., Aminabhavi, T. M. (2006) Electrodialytic removal of nitrates and hardness from simulated mixtures using ion-exchange membranes. Journal of Applied Polymer Science 99(4): 1788–1794.
Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Yue, Q. Y., Li, Q., Nguyen, T. V. (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology 148: 574–585.
Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J., Nguyen, P. D., Bui, X. T. (2014) Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles. Bioresource Technology 169: 750–776.
Orlando, U. S., Baes, A. U., Nishijima, W., Okada, M. (2002) Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity. Chemosphere 48 (10): 1041–1046.
Paripurnanda, L., Saravanamuthu, V., Jaya, K. (2013) Nitrate removal from water using surface-modified adsorbets. Journal of Environmental Management 131: 363–374.
Pehlivan, E., Altun, T., Parlayici, S. (2012) Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem. 135(4): 29–34.
Peleka, E. N., Deliyanni, E. A. (2009) Adsorptive removal of phosphates from aqueous solutions. Desalination 245: 357–371.
Post, J., Petta, L., Kramer A., Baz, I. A. (2008) EM water guide and recommendations on wastewater treatment and water reuse. Efficient Management of Wastewater 15: 19–28.
Pressley, T., Bishop, D., Roan, S. (1972) Ammonia-Nitrogen Removal by Breakpoint Chlorination, Department of the Interior, Federal Water Quality Administration, Advanced Waste Treatment Research Laboratory Robert A. Taft Water Research Center, Cincinnati OH, United States.
Romano, N., Zeng, C. (2013) Toxic effects of ammonia, nitrite, and nitrate to decapod crustaceans: A review on factors influencing their toxicity, physiological consequences, and coping mechanisms. Fisheries Science 21(1).
Rihani, K., Thayer, B. B., Mammou, A. B., Ammar, A. B. (2009) Biosorption characteristics of phosphate from aqueous solution onto phoenix dactylifera datepalm fibbers. J. Hazard. Mater. 170: 511–519.
Roginsky, R., Zeldovich, A. (1967) The Elovich equation in chemisorption kinetics. Nature 216: 1204–1205.
Rudzinski, W., Plazinski, W. (2009) Applicability of the pseudo-second order equation to represent the kinetics of adsorption at solid/solution interfaces: a theoretical analysis based on the statistical rate theory. Adsorption 15(2): 181–192.
Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, C., Van Drecht, G. (2006) Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications 16(6): 2064–2090.
Shuxia, Y. X., Ma, D., Ellis E. (2007) Initial stages of H2O adsorption and hydroxylation of Fe-terminated α-Fe2O3 surface. J. Surface science 601(12): 2426–2437.
Slimani, R., Anouzla, A., Abrouki, Y., Ramli, Y., El Antri, S., Mamouni, R., Lazar, S., El Haddad, M. (2011) Removal of a cationic dye – Methylene Blue – from aqueous media by the use of animal bone meal as a new low cost adsorbent. J. Mater. Environ. Sci. 2(1): 77–87.
Sotelo, J. L., Ovejero, G., Rodríguez, A., Álvarez, S., García, J. (2013) Study of natural clay adsorbent sepiolite for the removal of caffeine from aqueous solutions: Batch and fixed-bed column operation. Water, Air, & Soil Pollution 224(3).
Strom, F. (2006) Technologies to Remove Phosphorus from Wastewater Water. Rutgers.
Sulyman, M., Namiesnik, J., Gierak, A. (2017) Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: A Review. Pol. J. Environ. 26(2): 479–510.
Tasaso, P. (2014) Adsorption of copper using pomelo peel and depectinated pomelo peel. Journal of Clean Energy Technologies 2: 2.
Tchobanoglous, G., Franklin, L., Burton, H., Stensel, S. (2003) Wastewater Engineering (Treatment Disposal Reuse). Metcalf & Eddy, Inc. (4th ed.). McGraw-Hill Book Company. U.S.A.
Teng, C. C., Gaw-Hao, H., Chia-Hsun, L., Chuh-Shun, C., Shun-Hsing, C., Yao-Hui, H. (2013) Novel effective waste iron oxide-coated magnetic adsorbent for phosphate adsorption. J. Desalination and Water Treatment 52: 766–774.
Thinakaran, N., Panneerse, P., Baskaralingam, P., Elango, D., Sivanesan, S. (2008) Equilibrium and kinetic studies on the removal of acid red from aqueous solutions using activated carbons prepared from seed shells. J. Hazard. Mater. 158(1): 142–150.
Thomas, L., Eberhardt, L., Soo-Hong, M. (2008) Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption. Bioresource Technology 99: 626–630.
Tombácz, E. (2002) Adsorption from Electrolyte Solutions: Adsorption Theory, Modeling, and Analysis (Marcel Dekker).
Valix, M., Cheung, W. H., McKay, G. (2004) Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere 56(5): 493–501.
Xu, X., Gao, B., Yue, Q., Zhong, Q. (2011) Sorption of phosphate onto giant reed based adsorbent: FTIR, Raman spectrum analysis and dynamic sorption desorption properties in filter bed. Bioresource Technol. 102: 5278–5282.
Xu, X., Tan, Y. B., Zhao, X., Yue, Y.-Q., Wang, Q. Y. (2011) Characteristics of diethylenetriamine- crosslinked cotton stalk/wheat stalk and their biosorption capacities for phosphate. J. Hazard. Mater. 192(3): 1690–1696.
Ho, Y. S., McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry 34: 451–465.
Yang, G. C., Lee, H. (2005) Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Res. 39(5): 884–894.
Zare, K., Sadegh, H., Shahryari, R., Asif, M., Tyagi, I., Agarwal, S., Gupta, V. K. (2016) Equilibrium and kinetic study of ammonium ion adsorption by Fe3O4 nanoparticles from aqueous solutions. J. Mol. Liq. 213: 345–350.
Zhang, J., Shan, W., Ge, J., Shen, Z., Lei, Y., Wang, W. (2012) Kinetic and equilibrium studies of liquid phase adsorption of phosphate on modified sugarcane bagasse. Environ. Eng. 138: 252–258.