This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.
Bae, Y. J., Ryu, C., Jeon, J.-K., Park, J., Suh, D. J., Suh, Y.-W., Chang, D., Park, Y.-K. (2011) The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresource Technology 102: 3512–3520.
Bahar, E. S., Alessandro, A., Casazza, P., Perego, A., Busca, G. (2012) Medium-temperature conversion of biomass and wastes into liquid products, a review. Renewable and Sustainable Energy Reviews 16(8): 6455–6475.
Basil, T., Tugnoli, A., Struamigioli, C., Cozzani, V. (2016) Thermal effects during biomass pyrolysis. Thermochimica Acta 636: 63–70.
Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., Belayouni, H. (2014) Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and biochar. Waste Management 34: 210–218.
Benchrif, A., Guinot, B., Bounakhla, M., Cachier, H., Demnati, B., Baghdad, B. (2018) Aerosols in Northern Morocco: Input pathways and their chemical fingerprint. Atmospheric Environment 174: 140–147.
Betancor, S., Dominguez, B., Tuya, F., Figueroa, F. L., Haroun, R. (2015) Photosynthetic performance and photo protection of cystoseira humilis (Phaeophyceae) and Digenea simplex (Rhodophyceae) in an intertidal rock pool. Aquatic Botany 121: 16–25.
Biller, P., Ross, A. B. (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology 102(1): 215–225.
Brown, T. M., Duan, P., Savage, P. E. (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24(6): 3639–3646.
Chaiwong, K., Kiatsiriroat, T. (2015) Characterizations of bio-oil and bio-char products from algae with slow and fast pyrolysis. Int. J. Environ. Bioenergy 10(1): 65–76.
Chen, J., Fan, X., Jiang, B., Mu, L., Yao, P., Yin, H., Song, X. (2015) Pyrolysis of oil plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and products characterization. Bioresouce Technology 192: 592–602.
Choi, J. H., Kim, S.-S., Suh, D. J., Jang, E.-J., Min, K.-I., Woo, H. C. (2016) Characterization of the bio-oil and bio-char produced by fixed bed pyrolysis of the brown alga Saccharina japonica. Korean J. Chem. Eng. 33: 2691–2698.
Demiral, İ., Eryazıcı, A., Şensöz, S. (2012) Bio-oil production from pyrolysis of corncob (Zea mays L). Biomass Bioenergy 36: 43–49.
Demirbas, A. (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72(2): 215–219.
Demirbas, M. F. (2011) Biofuels from algae for sustainable development. Appl. Energy 88: 3473–3480.
Deniel, M., Haarlemmer, G., Roubaud, A., Weiss-Hortala, E., Fage, J. (2016) Energy valorization of food processing residues and model compounds by hydrothermal liquefaction. Renewable and Sustainable Eenergy Reviews 54: 1632–1652.
Dote, Y., Yokoyama, S., Ogi, T., Minow, T., Murakami, M. (1994) Liquefaction of Stillage from Ethanolic Fermentation and Upgrading of Liquefied Oil. Ecomaterials, pp. 285–288
Dzhembekov, N., Urusizaki, S., Moncheva, S., Ivonova, P. (2017) Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black sea. Harmful Algae 68: 40–51.
Ennouali, M., Ouhssine, M., Ouhssine, K., Elyachioui, M. (2006) Biotransformation of algal waste by biological fermentation. Afr. J. Biotechnology 5: 1233–1237.
Ertaş, M., Hakkı Alma, M. (2010) Pyrolysis of laurel (Laurus nobilis L.) extraction residues in a fixed-bed reactor: Characterization of bio-oil and bio-char. J. Anal. Applied Pyrolysis 88: 22–29.
Ferrera-Lorenzo, N., Fuente, E., Bermúdez, J. M., Suárez-Ruiz, I., Ruiz, B. (2014a) Conventional and microwave pyrolysis of a macroalgae waste from the Agar– Agar industry. Prospects for bio-fuel production. Bioresource Technology 151: 199–206.
Ferrera-Lorenzo, N., Fuente, E., Suárez-Ruiz, I., Gil, R. R., Ruiz, B., (2014b) Pyrolysis characteristics of a macroalgae solid waste generated by the industrial production of Agar–Agar. J. Anal. Applied Pyrolysis 105: 209–216.
Francavilla, M., Manara, P., Kamaterou, P., Monteleone, M., Zabaniotou, A. (2015) Cascade approach of red macroalgae Gracilaria gracilis sustainable valorization by extraction of phycobiliproteins and pyrolysis of residue. Bioresource Technology 184: 305–313.
Hanif, N., Idrissi, M.C., Naoki, T., et al. (2014) The exploitation of red algae Gelidium in the region of El-Jadida: socio-economic aspects and perspectives. Afr. Sci. Rev. Int. Sci. Technology 10: 103–126.
Harada, N. (2016) Review: Potential catastrophic reduction of sea ice in the western arctic ocean: its impact on biogeochemical cycles and marine ecosystems. Global and Planetary Change 136: 1–17.
Hu, Z., Zheng, Y., Yan, F., Xiao, B., Liu, S. (2013) Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy 52: 119–125.
Jacque, L., Broust, F., Diaye, F-T. N., Ferrer, M. (2007) Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. Fuel 86: 1800–1810.
Jena, U., Das, K. C. (2009) Production of Biocrude Oil from Microalgae Via Thermochemical Liquefaction Process. Amer, Soc. Agricultural and Biological Engineers, St. Joseph, 2009.
Kraiem, T., Hassen-Trabelsi, A. B., Naoui, S., Belayouni, H., Jeguirim, M. (2015) Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology 138: 404–412.
Kravtsova, A. V., Milchakova, N. A., Frontasyeva, M. V. (2015) Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from amrine protected areas of Crimea (Black sea). Marine Pollution Bulletin 97(1–2): 548–554.
Kumaravel, S. T., Murugesan, A., Kumaravel, A. (2016). Tyre pyrolysis oil as an alternative fuel for diesel engines-a review. Renewable and Sustainable Energy Reviews 60: 1678–1685.
Li, D., Chen, L., Xu, D., Zhang, X., Ye, N., Chen, F., Chen, S. (2012) Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresource Technology 104: 737–742.
Maddi, B., Viamajala, S., Varanasi, S. (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresource Technology 102: 11018–11026.
Matsui, T., Namuco, O. S., Ziska, L. H., Horie, T. (1997) Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Research 51(3): 213–219.
Mendez-Sandin, M., Fernandez, C. (2016) Changes in the structure and dynamics of marine assemblages dominated by Bifurcaria bifurcate and Cystoseira species over three decades (1977–2007), Estuarine. Coastal and Shelf Science 175: 46–56.
Meuzelaar, H. L. C., Huff, S. M. (1981) Characterization of leukemic and normal white blood cells by curie-point pyrlysis-MS II biochemical interpretation of some of the differences in the pyrolysis patterns. Journal of Analytical and Applied Pyrolysis 3(2): 111–129.
Minow, T., Yokoyama, S. Y., Kishimoto, M., Okakurat, T. (1995) Oil production from algal cells of Donaliella tertiolecta by direct thermochemical liquefaction. Fuel 74: 1735–1738.
Obeid, W., Salmon, E., Lewan, M. D., Hatcher, P. G. (2015) Hydrous pyrolysis of scenedesmus algae and algaenan-like residue. Organic Geochemistry 85: 89–101.
Onay, O. (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixedbed reactor. Fuel Processing Technology 88: 523–531.
Onay, O., Koçkar, O.M. (2004) Fixed-bed pyrolysis of rapeseed (Brassica napus L.). Biomass Bioenergy 26: 289–299.
Onay, O., Koçkar, O. M. (2006) Pyrolysis of rapeseed in a free fall reactor for production of bio-oil. Fuel 85: 1921–1928.
Puig, M., Joan, A., Bruno, C., Corona, A. (2010) Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews 14(9): 2841–2851.
Pûtun, A. E., Gerçel, H. F., Koçkar, O. M., Ege, O., Snape, C. E., Pûtun, E. (1996) Oil production from an arid land plant: fixed bed pyrolysis and hydropyrolysis of Euphorbia rigida. Fuel 75(11): 1307–1312.
Pûtun, A. E., Uzun, B.B., Apaydin, A., Pûtun, E. (2005) Bio-oil olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Processing Technology 87(1): 25–32.
Ramos, A., Monteiro, E., Silva, V., Rouboa, A. (2018) Co-gasification and recent developments on waste-to-energy conversion: a review. Renewable and Sustainable Energy Reviews 81(1): 380–398.
Rochette, J., Billé, R., Molenaar, E. J., Drankier, P., Chabason, L. (2015) Regional oceans governance mechanisms: A review. Marine Policy 60: 9–19.
Ross, A. B., Jones, J. M., Kubacki, M. L., Bridgeman, T. (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology 99: 6494–6504.
Schultz, R. D., Dekker, A. O. (1955) The absolute thermal decomposition rates of solide: Part I. The hote-plate pyrolysis of ammonium chloride and the hot-wire pyrolysis of polymethylmethacrylate (Plexiglas IA). Symposium (International) on Combustion 5(1): 260–267. Shell Sustainablity report; http://reports.shell.com/sustainability-report.
Torri, C., Alba, L. G., Samori, C., Vander Spek, J., Fabbri, D., Sasha, R. A. (2012) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae borefinery concept. Energy Fuels 26(1): 642–657.
Tsug, S., Ohtani, H. (1997) Structural characterization of polymeric materials by pyrolysis- GC/MS. Polymer Degradation and Stability 18(1–2): 109–130.
Tuner, L. P. (1969) Characterization of nucleotides and nucleosides by pyrolysis-gas chromatography. Analytical Biochemistry 28: 288–294.
Vardon, D. R., Sharma, B. K., Balazina, G. V., Rajagopalan, K., Strathman, T. J. (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Biresource Technology 109: 178–187.
Vollmin, J., Kriemler, P., Ounura, I., Seibl, J., Simon, W. (1966) Structural elucidation with a thermal fragmentation – gas chromatography – mass spectrometry combination. Microchemical Journal 11(1): 73–86.
Wilson, R. F., Baye, L. J. (1959) Thermogravimetric pyrolysis of some 1.2:3-benzotriazole compounds of osmium. Journal of Inorganic and Nuclear Chemistry 9(2): 140–144.
Yang, Y. F., Feng, C. P., Inamori, Y., Maekaw, T. (2004) Analysis of energy conversion characteristics in liquefaction of algae. Resources, Conservation and Recycling 43(1): 21–33.
Yanik, J., Stahl, R., Troeger, N., Sinag, A. (2013) Pyrolysis of algal biomass. J. Anal. Applied Pyrolysis 103: 134–141.
Zhang, Y., Niu, Y., Zou, H., Lei, Y., Zhang, J., Zhung, H., Hui, S. (2017) Characteristics of biomass fast pyrolysis in a wire-mesh reactor. Fuel 200: 225–235.
Zhao, H., Yan, H., Dong, S., Zhang, Y., Sun, B., Zhang, C., Ai, Y., Chen, B., Liu, Q., Sui, T., Qin, S. (2013) Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. Journal of Therm. Analysis Calorimetry 111: 1685–1690.
Zhao, H., Yan, H.-X., Liu, M., Sun, B.-B., Zhang, Y., Dong, S.-S., Qi, L.-B., Qin, S. (2013) Production of bio-oil from fast pyrolysis of macroalgae enteromorpha prolifera powder in a free-fall reactor. Energy Sources, Part: Recovery Util. Environ. Eff. 35: 859–867.
Zou, S. P., Wu, Y., Yang, M., Li, C., Tong, J. (2010) Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology 101: 359–366.