View More View Less
  • 1 Department of Chemistry and Environment, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, 23000 Béni-Mellal, Morocco
  • 2 Organic Chemistry and Analytical Laboratory, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, 23000 Béni-Mellal, Morocco
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $173.00

This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.

  • Bae, Y. J., Ryu, C., Jeon, J.-K., Park, J., Suh, D. J., Suh, Y.-W., Chang, D., Park, Y.-K. (2011) The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresource Technology 102: 35123520.

    • Search Google Scholar
    • Export Citation
  • Bahar, E. S., Alessandro, A., Casazza, P., Perego, A., Busca, G. (2012) Medium-temperature conversion of biomass and wastes into liquid products, a review. Renewable and Sustainable Energy Reviews 16(8): 64556475.

    • Search Google Scholar
    • Export Citation
  • Basil, T., Tugnoli, A., Struamigioli, C., Cozzani, V. (2016) Thermal effects during biomass pyrolysis. Thermochimica Acta 636: 6370.

  • Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., Belayouni, H. (2014) Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and biochar. Waste Management 34: 210218.

    • Search Google Scholar
    • Export Citation
  • Benchrif, A., Guinot, B., Bounakhla, M., Cachier, H., Demnati, B., Baghdad, B. (2018) Aerosols in Northern Morocco: Input pathways and their chemical fingerprint. Atmospheric Environment 174: 140147.

    • Search Google Scholar
    • Export Citation
  • Betancor, S., Dominguez, B., Tuya, F., Figueroa, F. L., Haroun, R. (2015) Photosynthetic performance and photo protection of cystoseira humilis (Phaeophyceae) and Digenea simplex (Rhodophyceae) in an intertidal rock pool. Aquatic Botany 121: 1625.

    • Search Google Scholar
    • Export Citation
  • Biller, P., Ross, A. B. (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology 102(1): 215225.

    • Search Google Scholar
    • Export Citation
  • Brown, T. M., Duan, P., Savage, P. E. (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24(6): 36393646.

    • Search Google Scholar
    • Export Citation
  • Chaiwong, K., Kiatsiriroat, T. (2015) Characterizations of bio-oil and bio-char products from algae with slow and fast pyrolysis. Int. J. Environ. Bioenergy 10(1): 6576.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Fan, X., Jiang, B., Mu, L., Yao, P., Yin, H., Song, X. (2015) Pyrolysis of oil plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and products characterization. Bioresouce Technology 192: 592602.

    • Search Google Scholar
    • Export Citation
  • Choi, J. H., Kim, S.-S., Suh, D. J., Jang, E.-J., Min, K.-I., Woo, H. C. (2016) Characterization of the bio-oil and bio-char produced by fixed bed pyrolysis of the brown alga Saccharina japonica. Korean J. Chem. Eng. 33: 26912698.

    • Search Google Scholar
    • Export Citation
  • Demiral, İ., Eryazıcı, A., Şensöz, S. (2012) Bio-oil production from pyrolysis of corncob (Zea mays L). Biomass Bioenergy 36: 4349.

    • Search Google Scholar
    • Export Citation
  • Demirbas, A. (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72(2): 215219.

    • Search Google Scholar
    • Export Citation
  • Demirbas, M. F. (2011) Biofuels from algae for sustainable development. Appl. Energy 88: 34733480.

  • Deniel, M., Haarlemmer, G., Roubaud, A., Weiss-Hortala, E., Fage, J. (2016) Energy valorization of food processing residues and model compounds by hydrothermal liquefaction. Renewable and Sustainable Eenergy Reviews 54: 16321652.

    • Search Google Scholar
    • Export Citation
  • Dote, Y., Yokoyama, S., Ogi, T., Minow, T., Murakami, M. (1994) Liquefaction of Stillage from Ethanolic Fermentation and Upgrading of Liquefied Oil. Ecomaterials, pp. 285288

  • Dzhembekov, N., Urusizaki, S., Moncheva, S., Ivonova, P. (2017) Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black sea. Harmful Algae 68: 4051.

    • Search Google Scholar
    • Export Citation
  • Ennouali, M., Ouhssine, M., Ouhssine, K., Elyachioui, M. (2006) Biotransformation of algal waste by biological fermentation. Afr. J. Biotechnology 5: 12331237.

    • Search Google Scholar
    • Export Citation
  • Ertaş, M., Hakkı Alma, M. (2010) Pyrolysis of laurel (Laurus nobilis L.) extraction residues in a fixed-bed reactor: Characterization of bio-oil and bio-char. J. Anal. Applied Pyrolysis 88: 2229.

    • Search Google Scholar
    • Export Citation
  • Ferrera-Lorenzo, N., Fuente, E., Bermúdez, J. M., Suárez-Ruiz, I., Ruiz, B. (2014a) Conventional and microwave pyrolysis of a macroalgae waste from the Agar– Agar industry. Prospects for bio-fuel production. Bioresource Technology 151: 199206.

    • Search Google Scholar
    • Export Citation
  • Ferrera-Lorenzo, N., Fuente, E., Suárez-Ruiz, I., Gil, R. R., Ruiz, B., (2014b) Pyrolysis characteristics of a macroalgae solid waste generated by the industrial production of Agar–Agar. J. Anal. Applied Pyrolysis 105: 209216.

    • Search Google Scholar
    • Export Citation
  • Francavilla, M., Manara, P., Kamaterou, P., Monteleone, M., Zabaniotou, A. (2015) Cascade approach of red macroalgae Gracilaria gracilis sustainable valorization by extraction of phycobiliproteins and pyrolysis of residue. Bioresource Technology 184: 305313.

    • Search Google Scholar
    • Export Citation
  • Hanif, N., Idrissi, M.C., Naoki, T., et al. (2014) The exploitation of red algae Gelidium in the region of El-Jadida: socio-economic aspects and perspectives. Afr. Sci. Rev. Int. Sci. Technology 10: 103126.

    • Search Google Scholar
    • Export Citation
  • Harada, N. (2016) Review: Potential catastrophic reduction of sea ice in the western arctic ocean: its impact on biogeochemical cycles and marine ecosystems. Global and Planetary Change 136: 117.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., Zheng, Y., Yan, F., Xiao, B., Liu, S. (2013) Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy 52: 119125.

    • Search Google Scholar
    • Export Citation
  • Jacque, L., Broust, F., Diaye, F-T. N., Ferrer, M. (2007) Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. Fuel 86: 18001810.

    • Search Google Scholar
    • Export Citation
  • Jena, U., Das, K. C. (2009) Production of Biocrude Oil from Microalgae Via Thermochemical Liquefaction Process. Amer, Soc. Agricultural and Biological Engineers, St. Joseph, 2009.

    • Search Google Scholar
    • Export Citation
  • Kraiem, T., Hassen-Trabelsi, A. B., Naoui, S., Belayouni, H., Jeguirim, M. (2015) Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology 138: 404412.

    • Search Google Scholar
    • Export Citation
  • Kravtsova, A. V., Milchakova, N. A., Frontasyeva, M. V. (2015) Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from amrine protected areas of Crimea (Black sea). Marine Pollution Bulletin 97(1–2): 548554.

    • Search Google Scholar
    • Export Citation
  • Kumaravel, S. T., Murugesan, A., Kumaravel, A. (2016). Tyre pyrolysis oil as an alternative fuel for diesel engines-a review. Renewable and Sustainable Energy Reviews 60: 16781685.

    • Search Google Scholar
    • Export Citation
  • Li, D., Chen, L., Xu, D., Zhang, X., Ye, N., Chen, F., Chen, S. (2012) Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresource Technology 104: 737742.

    • Search Google Scholar
    • Export Citation
  • Maddi, B., Viamajala, S., Varanasi, S. (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresource Technology 102: 1101811026.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Namuco, O. S., Ziska, L. H., Horie, T. (1997) Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Research 51(3): 213219.

    • Search Google Scholar
    • Export Citation
  • Mendez-Sandin, M., Fernandez, C. (2016) Changes in the structure and dynamics of marine assemblages dominated by Bifurcaria bifurcate and Cystoseira species over three decades (1977–2007), Estuarine. Coastal and Shelf Science 175: 4656.

    • Search Google Scholar
    • Export Citation
  • Meuzelaar, H. L. C., Huff, S. M. (1981) Characterization of leukemic and normal white blood cells by curie-point pyrlysis-MS II biochemical interpretation of some of the differences in the pyrolysis patterns. Journal of Analytical and Applied Pyrolysis 3(2): 111129.

    • Search Google Scholar
    • Export Citation
  • Minow, T., Yokoyama, S. Y., Kishimoto, M., Okakurat, T. (1995) Oil production from algal cells of Donaliella tertiolecta by direct thermochemical liquefaction. Fuel 74: 17351738.

    • Search Google Scholar
    • Export Citation
  • Obeid, W., Salmon, E., Lewan, M. D., Hatcher, P. G. (2015) Hydrous pyrolysis of scenedesmus algae and algaenan-like residue. Organic Geochemistry 85: 89101.

    • Search Google Scholar
    • Export Citation
  • Onay, O. (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixedbed reactor. Fuel Processing Technology 88: 523531.

    • Search Google Scholar
    • Export Citation
  • Onay, O., Koçkar, O.M. (2004) Fixed-bed pyrolysis of rapeseed (Brassica napus L.). Biomass Bioenergy 26: 289299.

  • Onay, O., Koçkar, O. M. (2006) Pyrolysis of rapeseed in a free fall reactor for production of bio-oil. Fuel 85: 19211928.

  • Puig, M., Joan, A., Bruno, C., Corona, A. (2010) Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews 14(9): 28412851.

    • Search Google Scholar
    • Export Citation
  • Pûtun, A. E., Gerçel, H. F., Koçkar, O. M., Ege, O., Snape, C. E., Pûtun, E. (1996) Oil production from an arid land plant: fixed bed pyrolysis and hydropyrolysis of Euphorbia rigida. Fuel 75(11): 13071312.

    • Search Google Scholar
    • Export Citation
  • Pûtun, A. E., Uzun, B.B., Apaydin, A., Pûtun, E. (2005) Bio-oil olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Processing Technology 87(1): 2532.

    • Search Google Scholar
    • Export Citation
  • Ramos, A., Monteiro, E., Silva, V., Rouboa, A. (2018) Co-gasification and recent developments on waste-to-energy conversion: a review. Renewable and Sustainable Energy Reviews 81(1): 380398.

    • Search Google Scholar
    • Export Citation
  • Rochette, J., Billé, R., Molenaar, E. J., Drankier, P., Chabason, L. (2015) Regional oceans governance mechanisms: A review. Marine Policy 60: 919.

    • Search Google Scholar
    • Export Citation
  • Ross, A. B., Jones, J. M., Kubacki, M. L., Bridgeman, T. (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology 99: 64946504.

    • Search Google Scholar
    • Export Citation
  • Schultz, R. D., Dekker, A. O. (1955) The absolute thermal decomposition rates of solide: Part I. The hote-plate pyrolysis of ammonium chloride and the hot-wire pyrolysis of polymethylmethacrylate (Plexiglas IA). Symposium (International) on Combustion 5(1): 260267. Shell Sustainablity report; http://reports.shell.com/sustainability-report.

    • Search Google Scholar
    • Export Citation
  • Torri, C., Alba, L. G., Samori, C., Vander Spek, J., Fabbri, D., Sasha, R. A. (2012) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae borefinery concept. Energy Fuels 26(1): 642657.

    • Search Google Scholar
    • Export Citation
  • Tsug, S., Ohtani, H. (1997) Structural characterization of polymeric materials by pyrolysis- GC/MS. Polymer Degradation and Stability 18(1–2): 109130.

    • Search Google Scholar
    • Export Citation
  • Tuner, L. P. (1969) Characterization of nucleotides and nucleosides by pyrolysis-gas chromatography. Analytical Biochemistry 28: 288294.

    • Search Google Scholar
    • Export Citation
  • Vardon, D. R., Sharma, B. K., Balazina, G. V., Rajagopalan, K., Strathman, T. J. (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Biresource Technology 109: 178187.

    • Search Google Scholar
    • Export Citation
  • Vollmin, J., Kriemler, P., Ounura, I., Seibl, J., Simon, W. (1966) Structural elucidation with a thermal fragmentation – gas chromatography – mass spectrometry combination. Microchemical Journal 11(1): 7386.

    • Search Google Scholar
    • Export Citation
  • Wilson, R. F., Baye, L. J. (1959) Thermogravimetric pyrolysis of some 1.2:3-benzotriazole compounds of osmium. Journal of Inorganic and Nuclear Chemistry 9(2): 140144.

    • Search Google Scholar
    • Export Citation
  • Yang, Y. F., Feng, C. P., Inamori, Y., Maekaw, T. (2004) Analysis of energy conversion characteristics in liquefaction of algae. Resources, Conservation and Recycling 43(1): 2133.

    • Search Google Scholar
    • Export Citation
  • Yanik, J., Stahl, R., Troeger, N., Sinag, A. (2013) Pyrolysis of algal biomass. J. Anal. Applied Pyrolysis 103: 134141.

  • Zhang, Y., Niu, Y., Zou, H., Lei, Y., Zhang, J., Zhung, H., Hui, S. (2017) Characteristics of biomass fast pyrolysis in a wire-mesh reactor. Fuel 200: 225235.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., Yan, H., Dong, S., Zhang, Y., Sun, B., Zhang, C., Ai, Y., Chen, B., Liu, Q., Sui, T., Qin, S. (2013) Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. Journal of Therm. Analysis Calorimetry 111: 16851690.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., Yan, H.-X., Liu, M., Sun, B.-B., Zhang, Y., Dong, S.-S., Qi, L.-B., Qin, S. (2013) Production of bio-oil from fast pyrolysis of macroalgae enteromorpha prolifera powder in a free-fall reactor. Energy Sources, Part: Recovery Util. Environ. Eff. 35: 859867.

    • Search Google Scholar
    • Export Citation
  • Zou, S. P., Wu, Y., Yang, M., Li, C., Tong, J. (2010) Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology 101: 359366.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 115 0 0
Sep 2020 73 0 0
Oct 2020 23 0 0
Nov 2020 32 2 3
Dec 2020 16 0 0
Jan 2021 4 0 0
Feb 2021 0 0 0