View More View Less
  • 1 Syiah Kuala University, Banda Aceh 23111, Indonesia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $173.00

Abstract

The study aims to evaluate two-stage anaerobic co-digestion of leachate and starch waste using anaerobic biofilm bioreactor to enhance methane production. The anaerobic digestion process was operated under the mesophilic condition at 35 ± 1 °C. Hydraulic retention time (HRT) applied to the acidogenesis and methanogenesis reactors were 5 and 25 days, respectively. The organic loading rate (OLR) used in the process of acidogenesis was 2.91 gram volatile solid /L.day, while methanogenesis was 0.58 gram volatile solid (VS) per liter per day. Results showed that two-stage process using biofilm was an effective method for operating anaerobic co-digestion of starch waste and landfill leachate in which the system produced higher methane yield at 125.11 mL methane (CH4) per gram volatile solid (VS) added (mL.CH4/g.VS.added) in comparison to the single-stage process (20.57 mL CH4/g.VS.added) and two-stage process (77.60 mL CH4/g.VS.added) without using biofilm. Two-stage process using biofilm also effectively reduced organic matters in the culture in which the system reached 61% BOD removal in comparison to the single-stage process and two-stage process without biofilm that only had 27.6 and 39.3% BOD removal, respectively. This study suggested that the two-stage process using biofilm would be the preferred technique for treating starch waste and landfill leachate.

  • [1]

    Chen, Y., Cheng, J. J., Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource technology, 99 (10), 40444064.

    • Search Google Scholar
    • Export Citation
  • [2]

    Yenigün, O., Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: a review. Process Biochemistry, 48(5–6), 901911.

  • [3]

    Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P. N. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied energy, 123, 143156.

    • Search Google Scholar
    • Export Citation
  • [4]

    Koch, K., Helmreich, B., Drewes, J. E. (2015). Co-digestion of food waste in municipal wastewater treatment plants: effect of different mixtures on methane yield and hydrolysis rate constant. Applied Energy, 137, 250255.

    • Search Google Scholar
    • Export Citation
  • [5]

    Khongkliang, P., Kongjan, P., Sompong, O. (2015). Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energy Procedia, 79, 827832.

    • Search Google Scholar
    • Export Citation
  • [6]

    Darwin , Cord-Ruwisch R., Charles W. (2018). Ethanol and lactic acid production from sugar and starch wastes by anaerobic acidification. Engineering in Life Sciences, 18, 635642.

    • Search Google Scholar
    • Export Citation
  • [7]

    Xu, Z., Zhao, M., Miao, H., Huang, Z., Gao, S., Ruan, W. (2014). In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresource Technology, 163, 186192.

    • Search Google Scholar
    • Export Citation
  • [8]

    Wang, K., Yin, J., Shen, D., Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresource Technology, 161, 395401.

    • Search Google Scholar
    • Export Citation
  • [9]

    Yang, Yu, Meng Xu, Wall, J. D., Zhiqiang Hu. (2012). Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Management, 32, 5, 816825.

    • Search Google Scholar
    • Export Citation
  • [10]

    Zhang, L., Lee, Y. W., Jahng, D. (2011). Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresource technology, 102(8), 50485059.

    • Search Google Scholar
    • Export Citation
  • [11]

    Demirel, B., Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992998.

    • Search Google Scholar
    • Export Citation
  • [12]

    Bryant, M. P. (1979). Microbial methane production-theoretical aspects. Journal of Animal Science, 48, 193201.

  • [13]

    Scherer, P., Sahm, H. (1981). Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnology 1, 5765.

    • Search Google Scholar
    • Export Citation
  • [14]

    Schönheit, P., Moll, J., Thauer, R. K. (1979). Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Archives of Microbiology, 123(1), 105107.

    • Search Google Scholar
    • Export Citation
  • [15]

    Mata-Alvarez, J., Mace, S., Llabres, P. (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 316.

    • Search Google Scholar
    • Export Citation
  • [16]

    Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J. (2012). Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresource Technology, 110, 6370.

    • Search Google Scholar
    • Export Citation
  • [17]

    Wang, X., Yang, G., Feng, Y., Ren, G., Han, X. (2012). Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource technology, 120, 7883.

    • Search Google Scholar
    • Export Citation
  • [18]

    Leung, C. C. J., Cheung, A. S. Y., Zhang, A. Y. Z., Lam, K. F., Lin, C. S. K. (2012). Utilisation of waste bread for fermentative succinic acid production. Biochemical Engineering Journal, 65, 1015.

    • Search Google Scholar
    • Export Citation
  • [19]

    Cuetos, M. J., Gomez, X., Otero, M., Moran, A., 2008. Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: influence of co-digestion withthe organic fraction of municipal solid waste (OFMSW). Biochem. Eng. J. 40, 99106.

    • Search Google Scholar
    • Export Citation
  • [20]

    Park, S., Li, Y. (2012). Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresource Technology, 111, 4248.

    • Search Google Scholar
    • Export Citation
  • [21]

    Xie, S., Wickham, R., Nghiem, L. D. (2017). Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. International Biodeterioration & Biodegradation, 116, 191197.

    • Search Google Scholar
    • Export Citation
  • [22]

    Pagés-Díaz, J., Pereda-Reyes, I., Taherzadeh, M. J., Sárvári-Horváth, I., Lundin, M. (2014). Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays. Chemical Engineering Journal, 245, 8998.

    • Search Google Scholar
    • Export Citation
  • [23]

    Zhang, W., Zhang, L., Li, A. (2015). Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: process performance and synergistic effects. Chemical Engineering Journal, 259, 795805.

    • Search Google Scholar
    • Export Citation
  • [24]

    Liao, X., Zhu, S., Zhong, D., Zhu, J., Liao, L. (2014). Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors. Waste Management, 34(11), 22782284.

    • Search Google Scholar
    • Export Citation
  • [25]

    Zhang, C., Su, H., Baeyens, J., Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383392.

    • Search Google Scholar
    • Export Citation
  • [26]

    Maspolim, Y., Zhou, Y., Guo, C., Xiao, K., Ng, W. J. (2015). Comparison of single-stage and two-phase anaerobic sludge digestion systems–Performance and microbial community dynamics. Chemosphere, 140, 5462.

    • Search Google Scholar
    • Export Citation
  • [27]

    Parawira, W., Read, J. S., Mattiasson, B., Björnsson, L. (2008). Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass and Bioenergy, 32(1), 4450.

    • Search Google Scholar
    • Export Citation
  • [28]

    Park, Y., Hong, F., Cheon, J., Hidaka, T., Tsuno, H. (2008). Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. Journal of Bioscience and Bioengineering, 105(1), 4854.

    • Search Google Scholar
    • Export Citation
  • [29]

    Salomoni, C., Caputo, A., Bonoli, M., Francioso, O., Rodriguez-Estrada, M. T., Palenzona, D. (2011). Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes. Bioresource Technology, 102(11), 64436448.

    • Search Google Scholar
    • Export Citation
  • [30]

    APHA, (2012) Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C. U.S.A.

  • [31]

    Darwin , Cheng, J. J., Liu, Z., Gontuphil, J. (2016a). Anaerobic co-digestion of cocoa husk with digested swine manure: evaluation of biodegradation efficiency in methane productivity. Agricultural Engineering International: The CIGR Journal 18, 147156.

    • Search Google Scholar
    • Export Citation
  • [32]

    Darwin, Fazil A., Ilham, M., Sarbaini Purwanto, S. (2017) Kinetics on anaerobic co-digestion of bagasse and digested cow manure with short hydraulic retention time. Research in Agricultural Engineering, 63(3), 121127.

    • Search Google Scholar
    • Export Citation
  • [33]

    Darwin, Cheng J. J., Gontupil J. Liu, Z. M. (2016). Influence of total solid concentration for methane production of cocoa husk co-digested with digested swine manure. International Journal of Environment and Waste Management 17, 1, 7190.

    • Search Google Scholar
    • Export Citation
  • [34]

    Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste management, 31(8), 17371744.

    • Search Google Scholar
    • Export Citation
  • [35]

    Kayhanian, M., Rich, D. (1995). Pilot-scale high solids thermophilic anaerobic Digestion of municipal solid waste with an emphasis on nutrientrequirements. Biomass Bioenergy 8, 433444.

    • Search Google Scholar
    • Export Citation
  • [36]

    Sawayama, S., Tada, C., Tsukahara, K., Yagishita, T. (2004). Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J. Bioscience and Bioengineering 97, 6570.

    • Search Google Scholar
    • Export Citation
  • [37]

    Hook, S. E., Steele, M. A., Northwood, K. S., Wright, A. D. G., McBride, B. W. (2011). Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microbial Ecology, 62(1), 94105.

    • Search Google Scholar
    • Export Citation
  • [38]

    Van Kessel, J. A. S., Russell, J. B. (1996). The effect of pH on ruminal methanogenesis. FEMS Microbiology Ecology, 20(4), 205210.

  • [39]

    Wang, Y., Zhang, Y., Wang, J., Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and bioenergy, 33(5), 848853.

    • Search Google Scholar
    • Export Citation
  • [40]

    Satyawali, Y., Balakrishnan, M. (2008). Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. Journal of Environmental Management, 86(3), 481497.

    • Search Google Scholar
    • Export Citation
  • [41]

    Angelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., Stams, A. J. (2011). Biomethanation and its potential. Methods in Enzymology, 494, 327351.

    • Search Google Scholar
    • Export Citation
  • [42]

    Serna-Maza, A., Heaven, S., Banks, C. J. (2014). Ammonia removal in food waste anaerobic digestion using a side-stream stripping process. Bioresource Technology, 152, 307315.

    • Search Google Scholar
    • Export Citation
  • [43]

    Basri, M. F., Yacob, S., Hassan, M. A., Shirai, Y., Wakisaka, M., Zakaria, M. R., Phang, L. Y. (2010). Improved biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process. World Journal of Microbiology and Biotechnology, 26(3), 505514.

    • Search Google Scholar
    • Export Citation
  • [44]

    Lai, P., Zhao, H. Z., Zeng, M., Ni, J. R. (2009). Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process. Journal of hazardous materials, 162(2–3), 14231429.

    • Search Google Scholar
    • Export Citation
  • [45]

    Wilkie, A. C (2005) Anaerobic digestion of dairy manure: Design and process consideration. Natural Resource, Agriculture, and Engineering Service, 176, 301312.

    • Search Google Scholar
    • Export Citation
  • [46]

    Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412427.

    • Search Google Scholar
    • Export Citation
  • [47]

    Michaud, S., Bernet, N., Buffière, P., Roustan, M., Moletta, R. (2002). Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Research, 36(5), 13851391.

    • Search Google Scholar
    • Export Citation
  • [48]

    Karadag, D., Köroğlu, O. E., Ozkaya, B., Cakmakci, M. (2015). A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochemistry, 50(2), 262271.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 25 0 0
Sep 2020 14 2 4
Oct 2020 26 0 0
Nov 2020 29 1 0
Dec 2020 21 0 0
Jan 2021 15 0 0
Feb 2021 0 0 0