View More View Less
  • 1 Syiah Kuala University, Banda Aceh 23111, Indonesia
Restricted access

Abstract

The study aims to evaluate two-stage anaerobic co-digestion of leachate and starch waste using anaerobic biofilm bioreactor to enhance methane production. The anaerobic digestion process was operated under the mesophilic condition at 35 ± 1 °C. Hydraulic retention time (HRT) applied to the acidogenesis and methanogenesis reactors were 5 and 25 days, respectively. The organic loading rate (OLR) used in the process of acidogenesis was 2.91 gram volatile solid /L.day, while methanogenesis was 0.58 gram volatile solid (VS) per liter per day. Results showed that two-stage process using biofilm was an effective method for operating anaerobic co-digestion of starch waste and landfill leachate in which the system produced higher methane yield at 125.11 mL methane (CH4) per gram volatile solid (VS) added (mL.CH4/g.VS.added) in comparison to the single-stage process (20.57 mL CH4/g.VS.added) and two-stage process (77.60 mL CH4/g.VS.added) without using biofilm. Two-stage process using biofilm also effectively reduced organic matters in the culture in which the system reached 61% BOD removal in comparison to the single-stage process and two-stage process without biofilm that only had 27.6 and 39.3% BOD removal, respectively. This study suggested that the two-stage process using biofilm would be the preferred technique for treating starch waste and landfill leachate.

  • [1]

    Chen, Y., Cheng, J. J., Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource technology, 99 (10), 40444064.

    • Search Google Scholar
    • Export Citation
  • [2]

    Yenigün, O., Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: a review. Process Biochemistry, 48(5–6), 901911.

  • [3]

    Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P. N. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied energy, 123, 143156.

    • Search Google Scholar
    • Export Citation
  • [4]

    Koch, K., Helmreich, B., Drewes, J. E. (2015). Co-digestion of food waste in municipal wastewater treatment plants: effect of different mixtures on methane yield and hydrolysis rate constant. Applied Energy, 137, 250255.

    • Search Google Scholar
    • Export Citation
  • [5]

    Khongkliang, P., Kongjan, P., Sompong, O. (2015). Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energy Procedia, 79, 827832.

    • Search Google Scholar
    • Export Citation
  • [6]

    Darwin , Cord-Ruwisch R., Charles W. (2018). Ethanol and lactic acid production from sugar and starch wastes by anaerobic acidification. Engineering in Life Sciences, 18, 635642.

    • Search Google Scholar
    • Export Citation
  • [7]

    Xu, Z., Zhao, M., Miao, H., Huang, Z., Gao, S., Ruan, W. (2014). In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresource Technology, 163, 186192.

    • Search Google Scholar
    • Export Citation
  • [8]

    Wang, K., Yin, J., Shen, D., Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresource Technology, 161, 395401.

    • Search Google Scholar
    • Export Citation
  • [9]

    Yang, Yu, Meng Xu, Wall, J. D., Zhiqiang Hu. (2012). Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Management, 32, 5, 816825.

    • Search Google Scholar
    • Export Citation
  • [10]

    Zhang, L., Lee, Y. W., Jahng, D. (2011). Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresource technology, 102(8), 50485059.

    • Search Google Scholar
    • Export Citation
  • [11]

    Demirel, B., Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992998.

    • Search Google Scholar
    • Export Citation
  • [12]

    Bryant, M. P. (1979). Microbial methane production-theoretical aspects. Journal of Animal Science, 48, 193201.

  • [13]

    Scherer, P., Sahm, H. (1981). Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnology 1, 5765.

    • Search Google Scholar
    • Export Citation
  • [14]

    Schönheit, P., Moll, J., Thauer, R. K. (1979). Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Archives of Microbiology, 123(1), 105107.

    • Search Google Scholar
    • Export Citation
  • [15]

    Mata-Alvarez, J., Mace, S., Llabres, P. (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 316.

    • Search Google Scholar
    • Export Citation
  • [16]

    Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J. (2012). Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresource Technology, 110, 6370.

    • Search Google Scholar
    • Export Citation
  • [17]

    Wang, X., Yang, G., Feng, Y., Ren, G., Han, X. (2012). Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource technology, 120, 7883.

    • Search Google Scholar
    • Export Citation
  • [18]

    Leung, C. C. J., Cheung, A. S. Y., Zhang, A. Y. Z., Lam, K. F., Lin, C. S. K. (2012). Utilisation of waste bread for fermentative succinic acid production. Biochemical Engineering Journal, 65, 1015.

    • Search Google Scholar
    • Export Citation
  • [19]

    Cuetos, M. J., Gomez, X., Otero, M., Moran, A., 2008. Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: influence of co-digestion withthe organic fraction of municipal solid waste (OFMSW). Biochem. Eng. J. 40, 99106.

    • Search Google Scholar
    • Export Citation
  • [20]

    Park, S., Li, Y. (2012). Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresource Technology, 111, 4248.

    • Search Google Scholar
    • Export Citation
  • [21]

    Xie, S., Wickham, R., Nghiem, L. D. (2017). Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. International Biodeterioration & Biodegradation, 116, 191197.

    • Search Google Scholar
    • Export Citation
  • [22]

    Pagés-Díaz, J., Pereda-Reyes, I., Taherzadeh, M. J., Sárvári-Horváth, I., Lundin, M. (2014). Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays. Chemical Engineering Journal, 245, 8998.

    • Search Google Scholar
    • Export Citation
  • [23]

    Zhang, W., Zhang, L., Li, A. (2015). Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: process performance and synergistic effects. Chemical Engineering Journal, 259, 795805.

    • Search Google Scholar
    • Export Citation
  • [24]

    Liao, X., Zhu, S., Zhong, D., Zhu, J., Liao, L. (2014). Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors. Waste Management, 34(11), 22782284.

    • Search Google Scholar
    • Export Citation
  • [25]

    Zhang, C., Su, H., Baeyens, J., Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383392.

    • Search Google Scholar
    • Export Citation
  • [26]

    Maspolim, Y., Zhou, Y., Guo, C., Xiao, K., Ng, W. J. (2015). Comparison of single-stage and two-phase anaerobic sludge digestion systems–Performance and microbial community dynamics. Chemosphere, 140, 5462.

    • Search Google Scholar
    • Export Citation
  • [27]

    Parawira, W., Read, J. S., Mattiasson, B., Björnsson, L. (2008). Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass and Bioenergy, 32(1), 4450.

    • Search Google Scholar
    • Export Citation
  • [28]

    Park, Y., Hong, F., Cheon, J., Hidaka, T., Tsuno, H. (2008). Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. Journal of Bioscience and Bioengineering, 105(1), 4854.

    • Search Google Scholar
    • Export Citation
  • [29]

    Salomoni, C., Caputo, A., Bonoli, M., Francioso, O., Rodriguez-Estrada, M. T., Palenzona, D. (2011). Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes. Bioresource Technology, 102(11), 64436448.

    • Search Google Scholar
    • Export Citation
  • [30]

    APHA, (2012) Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C. U.S.A.

  • [31]

    Darwin , Cheng, J. J., Liu, Z., Gontuphil, J. (2016a). Anaerobic co-digestion of cocoa husk with digested swine manure: evaluation of biodegradation efficiency in methane productivity. Agricultural Engineering International: The CIGR Journal 18, 147156.

    • Search Google Scholar
    • Export Citation
  • [32]

    Darwin, Fazil A., Ilham, M., Sarbaini Purwanto, S. (2017) Kinetics on anaerobic co-digestion of bagasse and digested cow manure with short hydraulic retention time. Research in Agricultural Engineering, 63(3), 121127.

    • Search Google Scholar
    • Export Citation
  • [33]

    Darwin, Cheng J. J., Gontupil J. Liu, Z. M. (2016). Influence of total solid concentration for methane production of cocoa husk co-digested with digested swine manure. International Journal of Environment and Waste Management 17, 1, 7190.

    • Search Google Scholar
    • Export Citation
  • [34]

    Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste management, 31(8), 17371744.

    • Search Google Scholar
    • Export Citation
  • [35]

    Kayhanian, M., Rich, D. (1995). Pilot-scale high solids thermophilic anaerobic Digestion of municipal solid waste with an emphasis on nutrientrequirements. Biomass Bioenergy 8, 433444.

    • Search Google Scholar
    • Export Citation
  • [36]

    Sawayama, S., Tada, C., Tsukahara, K., Yagishita, T. (2004). Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J. Bioscience and Bioengineering 97, 6570.

    • Search Google Scholar
    • Export Citation
  • [37]

    Hook, S. E., Steele, M. A., Northwood, K. S., Wright, A. D. G., McBride, B. W. (2011). Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microbial Ecology, 62(1), 94105.

    • Search Google Scholar
    • Export Citation
  • [38]

    Van Kessel, J. A. S., Russell, J. B. (1996). The effect of pH on ruminal methanogenesis. FEMS Microbiology Ecology, 20(4), 205210.

  • [39]

    Wang, Y., Zhang, Y., Wang, J., Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and bioenergy, 33(5), 848853.

    • Search Google Scholar
    • Export Citation
  • [40]

    Satyawali, Y., Balakrishnan, M. (2008). Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. Journal of Environmental Management, 86(3), 481497.

    • Search Google Scholar
    • Export Citation
  • [41]

    Angelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., Stams, A. J. (2011). Biomethanation and its potential. Methods in Enzymology, 494, 327351.

    • Search Google Scholar
    • Export Citation
  • [42]

    Serna-Maza, A., Heaven, S., Banks, C. J. (2014). Ammonia removal in food waste anaerobic digestion using a side-stream stripping process. Bioresource Technology, 152, 307315.

    • Search Google Scholar
    • Export Citation
  • [43]

    Basri, M. F., Yacob, S., Hassan, M. A., Shirai, Y., Wakisaka, M., Zakaria, M. R., Phang, L. Y. (2010). Improved biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process. World Journal of Microbiology and Biotechnology, 26(3), 505514.

    • Search Google Scholar
    • Export Citation
  • [44]

    Lai, P., Zhao, H. Z., Zeng, M., Ni, J. R. (2009). Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process. Journal of hazardous materials, 162(2–3), 14231429.

    • Search Google Scholar
    • Export Citation
  • [45]

    Wilkie, A. C (2005) Anaerobic digestion of dairy manure: Design and process consideration. Natural Resource, Agriculture, and Engineering Service, 176, 301312.

    • Search Google Scholar
    • Export Citation
  • [46]

    Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412427.

    • Search Google Scholar
    • Export Citation
  • [47]

    Michaud, S., Bernet, N., Buffière, P., Roustan, M., Moletta, R. (2002). Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Research, 36(5), 13851391.

    • Search Google Scholar
    • Export Citation
  • [48]

    Karadag, D., Köroğlu, O. E., Ozkaya, B., Cakmakci, M. (2015). A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochemistry, 50(2), 262271.

    • Search Google Scholar
    • Export Citation

 

 

The author instruction is available in PDF.
Please, download the file from HERE.

 

 

Senior editors

Editor(s)-in-Chief: Felföldi, József

Chair of the Editorial Board Szendrő, Péter

Editorial Board

  • Beke, János (Szent István University, Faculty of Mechanical Engineerin, Gödöllő – Hungary)
  • Fenyvesi, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Szendrő, Péter (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Felföldi, József (Szent István University, Faculty of Food Science, Budapest – Hungary)

 

Advisory Board

  • De Baerdemaeker, Josse (KU Leuven, Faculty of Bioscience Engineering, Leuven - Belgium)
  • Funk, David B. (United States Department of Agriculture | USDA • Grain Inspection, Packers and Stockyards Administration (GIPSA), Kansas City – USA
  • Geyer, Martin (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Horticultural Engineering, Potsdam - Germany)
  • Janik, József (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Kutzbach, Heinz D. (Institut für Agrartechnik, Fg. Grundlagen der Agrartechnik, Universität Hohenheim – Germany)
  • Mizrach, Amos (Institute of Agricultural Engineering. ARO, the Volcani Center, Bet Dagan – Israel)
  • Neményi, Miklós (Széchenyi University, Department of Biosystems and Food Engineering, Győr – Hungary)
  • Schulze-Lammers, Peter (University of Bonn, Institute of Agricultural Engineering (ILT), Bonn – Germany)
  • Sitkei, György (University of Sopron, Institute of Wood Engineering, Sopron – Hungary)
  • Sun, Da-Wen (University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Dublin – Ireland)
  • Tóth, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)

Prof. Felföldi, József
Institute: MATE - Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Measurements and Process Control
Address: 1118 Budapest Somlói út 14-16
E-mail: felfoldi.jozsef@uni-mate.hu

Indexing and Abstracting Services:

  • SCOPUS
  • CABI

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
8
Scimago
Journal Rank
0,141
Scimago Quartile Score Environmental Engineering (Q4)
Industrial and Manufacturing Engineering (Q4)
Mechanical Engineering (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Industrial and Manufacturing Engineering 261/338 (Q4)
Environmental Engineering 138/173 (Q4)
Mechanical Engineering 495/601 (Q4)
Scopus
SNIP
0,381

2020  
Scimago
H-index
8
Scimago
Journal Rank
0,197
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q3
Mechanical Engineering Q4
Scopus
Cite Score
33/69=0,5
Scopus
Cite Score Rank
Environmental Engineering 126/146 (Q4)
Industrial and Manufacturing Engineering 269/336 (Q3)
Mechanical Engineering 512/596 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
53
Scopus
Documents
41
Days from submission to acceptance 122
Days from acceptance to publication 40
Acceptance rate 86%

 

2019  
Scimago
H-index
6
Scimago
Journal Rank
0,123
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q4
Mechanical Engineering Q4
Scopus
Cite Score
18/33=0,5
Scopus
Cite Score Rank
Environmental Engineering 108/132 (Q4)
Industrial and Manufacturing Engineering 242/340 (Q3)
Mechanical Engineering 481/585 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
13
Scopus
Documents
5

 

Progress in Agricultural Engineering Sciences
Publication Model Hybrid
Submission Fee none
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Article Processing Charge 900 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription:  148 EUR / 185 USD
Print + online subscription: 172 EUR / 215 USD
Subscription fee 2023 Online subsscription: 152 EUR / 185 USD
Print + online subscription: 177 EUR / 215 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles can be purchased at the prices indicated.

Progress in Agricultural Engineering Sciences
Language English
Size B5
Year of
Foundation
2004
Volumes
per Year
1
Issues
per Year
1
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-335X (Print)
ISSN 1787-0321 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2022 5 0 0
Mar 2022 7 0 0
Apr 2022 4 0 0
May 2022 12 0 0
Jun 2022 8 0 0
Jul 2022 8 1 1
Aug 2022 11 0 0