Authors:
Fraz Ahmad Khan Rice Research Institute, Kala Shah Kaku, Sheikhupura, 39018, Pakistan
Department of Biological and Agricultural Engineering, University of California, Davis, 95616, USA

Search for other papers by Fraz Ahmad Khan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6334-1078
,
Farzaneh Khorsandi Department of Biological and Agricultural Engineering, University of California, Davis, 95616, USA

Search for other papers by Farzaneh Khorsandi in
Current site
Google Scholar
PubMed
Close
,
Muddassir Ali Rice Research Institute, Kala Shah Kaku, Sheikhupura, 39018, Pakistan

Search for other papers by Muddassir Ali in
Current site
Google Scholar
PubMed
Close
,
Abdul Ghafoor Department of Farm Machinery and Power, University of Agriculture, Faisalabad, 38000, Pakistan

Search for other papers by Abdul Ghafoor in
Current site
Google Scholar
PubMed
Close
,
Rana Ahsan Raza Khan Rice Research Institute, Kala Shah Kaku, Sheikhupura, 39018, Pakistan

Search for other papers by Rana Ahsan Raza Khan in
Current site
Google Scholar
PubMed
Close
,
Muhammad Umair Agricultural Mechanization Research Institute, Faisalabad, 38000, Pakistan

Search for other papers by Muhammad Umair in
Current site
Google Scholar
PubMed
Close
,
Shahzaib Department of Farm Machinery and Power, University of Agriculture, Faisalabad, 38000, Pakistan

Search for other papers by Shahzaib in
Current site
Google Scholar
PubMed
Close
,
Abdul Rehman Rice Research Institute, Kala Shah Kaku, Sheikhupura, 39018, Pakistan

Search for other papers by Abdul Rehman in
Current site
Google Scholar
PubMed
Close
, and
Zahid Hussain Office of the Deputy Director Water Management, Hafizabad, 52110, Pakistan

Search for other papers by Zahid Hussain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spray is the primary method to apply pesticides to the crops. To provide enough coverage and deposition on target surfaces, the drop size produced during spray application must be precisely calibrated; nevertheless, it must not be too tiny to cause the undesirable phenomena known as “spray drift”. Spray drift is the movement of droplets in the atmosphere during or after spraying. The negative effect of spray drift can harm human health, livestock, and adjacent crops or can cause environmental pollution. To address this problem, a lot of work has been done. Previous studies on spray drift reduction approaches including factors promoting drift, drift measuring technologies, drift prediction models, and drift reduction technologies, were reviewed in this paper. Based on the literature review, future research and developments are projected. This review may provide guidance and reference to researchers for further development and improvement in drift reduction technologies.

  • Abbas, I., Liu, Z., Faheem, M., Noor, R.S., Sheikh, S.A., Solangi, K.A., and Raza, S.M. (2020). Different sensor-based intelligent spraying systems in Agriculture. Sensors and Actuators A: Physical, 316: 112265.

    • Search Google Scholar
    • Export Citation
  • Acimovic, S.G., Cregg, B.M., Sundin, G.W., and Wise, J.C. (2016). Comparison of drill- and needle-based tree injection technologies in healing of trunk injection ports on apple trees. Urban Forestry & Urban Greening, 19: 151157.

    • Search Google Scholar
    • Export Citation
  • Ahmad, F., Khaliq, A., Qiu, B., Sultan, M., and Ma, J. (2021). Technology in agriculture. BoD–Books on Demand.

  • Al Heidary, M., Douzals, J.P., Sinfort, C., and Vallet, A. (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: a literature review. Crop Protection, 63: 120130.

    • Search Google Scholar
    • Export Citation
  • Alix, A., Knauer, K., Streloke, M., and Poulsen, V. (2015). Development of a harmonized risk mitigation toolbox dedicated to environmental risks of pesticides in farmland in Europe: outcome of the MAgPIE workshop. Fifth European Workshop on Standardised Procedure for the Inspection of Sprayers in Europe—SPISE 5. Jul. Kühn Arch., 449: 149155.

    • Search Google Scholar
    • Export Citation
  • Al-Jumaili, A. and Salyani, M. (2014). Wind effect on the deposition of an air-assisted sprayer. University of Florida, Gainesville, FL, USA.

    • Search Google Scholar
    • Export Citation
  • ASABE S-572 spray tip classification by droplet size (2009). Developed by the pest control and fertilizer application committee; approved by the power and machinery division standards committee, and adopted by ASAE PM41.

    • Search Google Scholar
    • Export Citation
  • Asaei, H., Jafari, A., and Loghavi, M. (2019). Site-specific orchard sprayer equipped with machine vision for chemical usage management. Computer and Electronics in Agriculture, 162: 431439, https://doi.org/10.1016/j.compag.2019.04.040.

    • Search Google Scholar
    • Export Citation
  • Azfar, S., Nadeem, A., and Alkhodre, A.B. (2018). Monitoring, detection and control techniques of agriculture pests and diseases using wireless sensor network: a Review. International Journal of Advanced Computer Science and Application, 9(12), https://doi.org/10.14569/IJACSA.2018.091260.

    • Search Google Scholar
    • Export Citation
  • Baetens, K., Nuyttens, D., Verboven, P., Schampheleire, M., and Nicolai, R.H. (2007). Predicting drift from field spraying by means of a 3D computational fluid dynamics model. Computer and Electronics in Agriculture, 56(2): 161173.

    • Search Google Scholar
    • Export Citation
  • Balsari, P., Marucco, P, and Tamagnone, M. (2007). A test bench for the classification of boom sprayers according to drift risk. Crop Protection, 26(10): 14821489.

    • Search Google Scholar
    • Export Citation
  • Balsari, P., Emilio, G., Marucco, P., van de Zande, J.C., Nuyttens, D., Herbst, A., and Gallart, M. (2017). Field-crop-sprayer potential drift measured using test bench: effect of boom height and nozzle type. Biosystems Engineering, 154: 313.

    • Search Google Scholar
    • Export Citation
  • Bartzanas, T., Kacira, M., Zhu, H., Karmakar, S., Tamimi, E., Katsoulas, N., Lee, I.B., and Kittas, C. (2013). Computational fluid dynamics applications to improve crop production systems. Computer and Electronics in Agriculture, 93: 151167.

    • Search Google Scholar
    • Export Citation
  • Berger, C. and Laurent, F. (2019). Trunk injection of plant protection products to protect trees from pests and diseases. Crop Protection, 124: 104831.

    • Search Google Scholar
    • Export Citation
  • Bird, S.L., Esterly, D.M., and Perry, S.G. (1996). Off-target deposition of pesticides from agricultural aerial spray applications. Journal of Environmental Quality, 25: 10951104.

    • Search Google Scholar
    • Export Citation
  • Bish, M.D. and Bradley, K.W. (2017). Survey of Missouri pesticide applicator practices, knowledge, and perception. Weed Technology, 31: 165177.

    • Search Google Scholar
    • Export Citation
  • Bish, M.D., Farrell, S.T., Lerch, R.N., and Bradley, K.W. (2019). Dicamba losses to air after applications to soybean under stable and nonstable atmospheric conditions. Journal of Environmental Quality, 48: 16751682.

    • Search Google Scholar
    • Export Citation
  • Boatwright, H., Zhu, H., Clark, A., and Schnabel, G. (2020). Evaluation of the intelligent sprayer system in peach production. Plant Disease, 104: 32073212, https://doi.org/10.1094/PDIS-04-20-0696-RE.

    • Search Google Scholar
    • Export Citation
  • Bourodimos, G., Koutsiaras, M., Psiroukis, V., Balafoutis, A., and Fountas, S. (2019). Development and field evaluation of a spray drift risk assessment tool for vineyard spraying application. Agriculture, 9: 181, https://doi.org/10.3390/agriculture9080181.

    • Search Google Scholar
    • Export Citation
  • Broniarz-Press, L., Włodarczak, S., Matuszak, M., Ochowiak, M., Idziak, R., Szulc, T., and Skrzypczak, G. (2016). The effect of orifice shape and the injection pressure on enhancement of the atomization process for pressure-swirl atomizers. Crop Protection, 82: 6574.

    • Search Google Scholar
    • Export Citation
  • Butler Ellis, M.C. and Miller, P.C.H. (2010). The Silsoe spray drift model: a model of spray drift for the assessment of non-target exposures to pesticides. Biosystems Engineering, 107: 169177.

    • Search Google Scholar
    • Export Citation
  • Cai, J.C., Wang, X., Song, J., Wang, S.L., Yang, S., and Zhao, C.J. (2017). Development of real-time laser-scanning system to detect tree canopy characteristics for variable-rate pesticide application. International Journal of Agricultural and Biological Engineering, 10(6): 155163, https://doi.org/10.25165/j.ijabe.20171006.3140.

    • Search Google Scholar
    • Export Citation
  • Carlsen, S.C.K., Spliid, N.H., and Svensmark, B. (2006). Drift of 10 herbicides after tractor spray application. Primary drift (droplet drift). Chemosphere, 64: 778786.

    • Search Google Scholar
    • Export Citation
  • Castanet, G., Dunand, P., Caballina, O., and Lemoine, F. (2013). High-speed shadow imagery to characterize the size and velocity of the secondary droplets produced by drop impacts onto a heated surface. Experiments in Fluids, 54: 1489.

    • Search Google Scholar
    • Export Citation
  • Chaney, W.R. (1985). Anatomy and physiology related to chemical movement in trees. Journal of Arboriculture, 12: 8591.

  • Chen, Y., Zhu, H., and Ozkan, H.E. (2012). Development of a variable-rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures. Transaction of. ASABE, 55(3): 773781.

    • Search Google Scholar
    • Export Citation
  • Chen, L., Wallhead, M., Zhu, H., and Fulcher, A. (2019). Control of insects and diseases with intelligent variable-rate sprayers in ornamental nurseries. Journal of Environmental Horticulture, 37(3): 90100.

    • Search Google Scholar
    • Export Citation
  • Chen, L., Wallhead, M., Reding, M., Horst, L., and Zhu, H. (2020). Control of insect pests and diseases in an Ohio fruit farm with laser-guided intelligent sprayer. Horticulture Technology, 30(2): 168175.

    • Search Google Scholar
    • Export Citation
  • Chen, S.D., Lan, Y.B., Zhou, Z.Y., Deng, X.L., and Wang, J. (2021). Research advances of the drift reducing technologies in application of agricultural aviation spraying. International Journal of Agricultural and Biological Engineering, 14(5): 110.

    • Search Google Scholar
    • Export Citation
  • Chueca, P., Garcera, C., Molto, E., and Gutierrez, A. (2008). Development of a sensor-controlled sprayer for applying low-volume bait treatments. Crop Protection, 27: 13731379.

    • Search Google Scholar
    • Export Citation
  • Clay, S.A., De Sutter, T.M., and Clay, D.E. (2001). Herbicide concentration and dissipation from surface wind-erodible soil. Weed Science, 49: 431436.

    • Search Google Scholar
    • Export Citation
  • Cryer, S.A. and Altieri, A.L. (2017). Role of large inhomogeneities in initiating liquid sheet breakup in agricultural atomization. Biosystems Engineering, 163: 103115.

    • Search Google Scholar
    • Export Citation
  • da Cunha, J.P.A.R., Pereira, J.N.P., Barbosa, L.A., and da Silva, C.R. (2016). Pesticide application windows in the region of Uberlândia-MG, Brazil. Bioscience Journal, 32: 403411.

    • Search Google Scholar
    • Export Citation
  • Dalakouras, A., Jarausch, W., Buchholz, G., Bassler, A., Braun, M., Manthey, T., Krczal, G., and Wassenegger, M. (2018). Delivery of hairpin Rnas and small Rnas into woody and herbaceous plants by trunk injection and petiole absorption. Frontiers in Plant Science, 9: 1253.

    • Search Google Scholar
    • Export Citation
  • Dammer, K.H. (2016). Real-time variable-rate herbicide application for weed control in carrots. Weed Research, 56: 237246, https://doi.org/10.1111/wre.12205.

    • Search Google Scholar
    • Export Citation
  • De Cock, N., Massinon, M., Salah, S., and Lebeau, F. (2017). Investigation on optimal spray properties for ground-based agricultural applications using deposition and retention models. Biosystem Engineering, 162: 99111.

    • Search Google Scholar
    • Export Citation
  • Delele, M.A., Jaeken, P., Debaer, C., Baetens, K., Endalew, A.M., Ramon, H., Nicolai, B.M., and Verboven, P. (2007). CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction. Computer and Electronics in Agriculture, 55: 1627.

    • Search Google Scholar
    • Export Citation
  • Dexter, R.W. (2001). The effect of fluid properties on the spray quality from a flat fan nozzle. In: Pesticide formulations and application systems, Vol. 20. ASTM STP 1400, pp. 2743.

    • Search Google Scholar
    • Export Citation
  • Doccola, J.J., Smitley, D.R., Davis, T.W., Aiken, J.J., and Wild, P.M. (2011). Tree wound responses following systemic insecticide trunk injection treatments in green ash (Fraxinus pennsylvanica Marsh.) as determined by destructive autopsy. Arboriculture & Urban Forestry, 37: 612.

    • Search Google Scholar
    • Export Citation
  • Dombrowski, N. and Fraser, R.P. (1954). A photographic investigation into the disintegration of liquid sheets. Philosophical Transactions of the Royal Society a Mathematical, Physical, and Engineering Sciences, 247: 101130.

    • Search Google Scholar
    • Export Citation
  • Dong, T., Wang, J., Wang, Y., Tang, G., Cheng, Y., and Yan, W. (2023). Development of machine learning-based droplet diameter prediction model for electrohydrodynamic atomization systems. Chemical Engineering Science, 268: 118398.

    • Search Google Scholar
    • Export Citation
  • Dorr, G.J., Hewitt, A.J., Adkins, S.W., Hanan, J., Zhang, H.C., and Noller, B. (2013). A comparison of initial spray characteristics produced by agricultural nozzles. Crop Protection, 53(11): 109117.

    • Search Google Scholar
    • Export Citation
  • Downey, D., Giles, D., and Klassen, P. (2011). Smart sprayer technology provides environmental and economic benefits in California orchards. California. Agriculture, 65(2): 8589.

    • Search Google Scholar
    • Export Citation
  • Duga, A.T., Delele, M.A., Ruysen, K., Dekeyser, D., Nuyttens, D., Bylemans, D., Nicolai, B.M., and Verboven, P. (2017). Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers. Biosystems Engineering, 154: 6275.

    • Search Google Scholar
    • Export Citation
  • Endalew, A.M., Debaer, C., Rutten, N., Vercammen, J., Delele, M.A., Ramon, H., Nicolai, B.M., and Verboven, P. (2010). Modelling pesticide flow and deposition from air-assisted orchard spraying in orchards: a new integrated CFD approach. Agriculture and Forestry Meteorology, 150: 13831392.

    • Search Google Scholar
    • Export Citation
  • Escola, A., Rosell-Polo, J., and Planas, S. (2013). Variable rate sprayer. Part 1–orchard prototype: design, implementation, and validation. Computers and Electronics in Agriculture, 95: 122135.

    • Search Google Scholar
    • Export Citation
  • Falchieri, D. (2013). New application method for reducing pesticide rate/ha and cost in plant protection. Outlooks Pest Management, 24(6): 257261.

    • Search Google Scholar
    • Export Citation
  • Falchieri, D. and Boselli, M. (2020). Efficacy of low dose applications against cacopsylla pyri with emission control technology compared to standard full dose. ATTI Giornate Fitopatologiche, 1: 509514.

    • Search Google Scholar
    • Export Citation
  • Feng, Z.J., Zhang, X.L., Yuan, L.Y., and Wang, J.N. (2013). Infrared target detection and location for visual surveillance using fusion scheme of visible and infrared images. Mathematical Problems in Engineering, 17, https://doi.org/10.1155/2013/720979.

    • Search Google Scholar
    • Export Citation
  • Filer, T.H. (1973). Pressure apparatus for injecting chemicals into trees. Plant Disease Reporter, 57: 338341.

  • FOCUS (2007). Landscape and mitigation factors. In: Aquatic risk assessment. Extended summary and recommendations, vol. 1, report of the FOCUS working groupon landscape and mitigation factors in ecological risk assessment. EC Document Reference SANCO/10422/2005 V.2.0, pp. 1169.

    • Search Google Scholar
    • Export Citation
  • Ford, C.R., Vose, J.M., Daley, M., and Phillips, N. (2007). Use of water by Eastern Hemlock: implications for systemic insecticide application. Arboriculture & Urban Forestry, 33: 421427.

    • Search Google Scholar
    • Export Citation
  • Fritz, K.B. (2006). Meteorological effects on deposition and drift of aerially applied sprays. Transactions of the ASABE, 49(5): 12951301.

    • Search Google Scholar
    • Export Citation
  • Fritz, B.K. and Hoffmann, W.C. (2016). Measuring spray droplet size from agricultural nozzles using laser diffraction. Journal of Visualized Experiments, 115: e54533.

    • Search Google Scholar
    • Export Citation
  • Gaillard, A., Sijs, R., and Bonn, D. (2022). What determines the drop size in sprays of polymer solutions? Journal of Non-Newtonian Fluid Mechanics, 305: 104813, https://doi.org/10.1016/j.jnnfm.2022.104813.

    • Search Google Scholar
    • Export Citation
  • Gao, J., Zhu, H., Horst, L., and Krause, C.R. (2015). Determination of foliar uptake of water droplets on waxy leaves in controlled environmental system. Transactions of the ASABE, 58(4): 10171024.

    • Search Google Scholar
    • Export Citation
  • Garcera, C., Moltó, E., and Chueca, P. (2017). Spray pesticide applications in Mediterranean citrus orchards: canopy deposition and off-target losses. Science of the Total Environment, 599–600: 13441362.

    • Search Google Scholar
    • Export Citation
  • Gargari, H.P., Teimourlou, R.F., and Valizadeh, M. (2019). Spray droplet characterization using a piezoelectric sensor through classification based on machine learning. INMATEH-Agricultural Engineering, 59: 151160.

    • Search Google Scholar
    • Export Citation
  • Ghafoor, A., Khan, F.A., Khorsandi, F., Khan, M.A., Nauman, H.M., and Farid, M.U. (2022). Development and evaluation of a prototype self-propelled crop sprayer for agricultural sustainability in small farms. Sustainability, 14: 9204, https://doi.org/10.3390/su14159204.

    • Search Google Scholar
    • Export Citation
  • Gil, E., Escola, A., and Rosell, J. (2007). Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection, 26(8): 12871297.

    • Search Google Scholar
    • Export Citation
  • Gil, E., Llorens, J., Llop, J., Fàbregas, X., and Gallart, M. (2013). Use of a terrestrial LiDAR sensor for drift detection in vineyard spraying. Sensors, 13: 516534.

    • Search Google Scholar
    • Export Citation
  • Gil, E., Balsari, P., Gallart, M., Llorens, J., Marucco, P., and Andersen, P.G. (2014). Determination of drift potential of different flat fan nozzles on a boom sprayer using a test bench. Crop Protection, 56: 5868.

    • Search Google Scholar
    • Export Citation
  • Giles, D.K. (2020). Pulse width modulation for nozzle flow control: principles, development, and status of the technology. Aspects of Applied Biology, 144: 5966.

    • Search Google Scholar
    • Export Citation
  • Gregorio, E., Rosell-Polo, J.R., Sanz, R., Rocadenbosch, F., Solanelles, F., Garcerà, C., Chueca, P., Arnó, J., del Moral, I., Masip, J., Camp, F., Viana, R., Escolà, A., Gràcia, F., Planas, S., and Moltó, E. (2014). LIDAR as an alternative to passive collectors to measure pesticide spray drift. Atmospheric Environment, 82: 8393.

    • Search Google Scholar
    • Export Citation
  • Gregorio, E., Torrent, X., Planas, S., and Rosell-Polo, J.R. (2019). Assessment of spray drift potential reduction for hollow-cone nozzles: part 2. LiDAR-technique. Science of the Total Environment, 687: 967977.

    • Search Google Scholar
    • Export Citation
  • Grella, M., Gallart, M., Marucco, P., Balasri, P., and Gil, E. (2017). Ground deposition and airborne spray drift assessment in vineyard and orchard: the influence of environmental variables and sprayer settings. Sustainability, 9: 728, https://doi.org/10.3390/su9050728.

    • Search Google Scholar
    • Export Citation
  • Grella, M., Miranda-Fuentes, A., Marucco, P., Balsari, P., and Gioelli, F. (2020). Development of drift-reducing spouts for vineyard pneumatic sprayers: measurement of droplets size spectra generated and their classification. Applied Sciences, 10: 7826, https://doi.org/10.3990/app10217826.

    • Search Google Scholar
    • Export Citation
  • Guo, H., Zhou, J., Liu, F., He, Y., Huang, H., and Wang, H. (2020). Application of machine learning method to quantitatively evaluate the droplet size and deposition distribution of the UAV spray nozzle. Applied Sciences, 10: 1759.

    • Search Google Scholar
    • Export Citation
  • He, X., Zeng, A., and Liu, Y. (2011). Precision orchard sprayer based on automatically infrared target detecting and electrostatic spraying techniques. International Journal of Agricultural and Biological Engineering, 4(1): 3540, https://doi.org/10.3965/j.issn.1934-6344.2011.01.035-040.

    • Search Google Scholar
    • Export Citation
  • Hewitt, A.J. (2008). Droplet size spectra classification categories in aerial application scenarios. Crop Protection, 27(9): 12841288.

    • Search Google Scholar
    • Export Citation
  • Hillocks, R. (2012). Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Protection, 31(1): 8593.

    • Search Google Scholar
    • Export Citation
  • Hilz, E. and Varmeer, A.W.P. (2013). Spray drift review: the extent to which a formulation can contribute to spray drift reduction. Crop Protection, 44: 7583.

    • Search Google Scholar
    • Export Citation
  • Hilz, E. and Vermeer, A.V.P. (2012). Effect of formulation on spray drift: a case study for commercial imidacloprid products. Aspects of Applied Biology, 114: 445450.

    • Search Google Scholar
    • Export Citation
  • Hiscox, A.L., Miller, D.R., Nappo, C.J., and Ross, J. (2006). Dispersion of fine spray from aerial applications in stable atmospheric conditions. Transactions of the ASABE, 49(5): 15131520.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, W., Fritz, B., Bagley, W., and Lan, Y. (2011). Effects of air speed and liquid temperature on droplet size. In: Pesticide formulations and delivery systems, 31 V: Innovative green chemistries for the 21st century. ASTM International.

    • Search Google Scholar
    • Export Citation
  • Holmes, F.W. (1982). Distribution of dye in elms after trunk or root injection. Journal of Arboriculture, 8: 250252.

  • Hong, S.W., Zhao, L., and Zhu, H. (2018a). CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses. Atmospheric Environment, 175: 109119.

    • Search Google Scholar
    • Export Citation
  • Hong, S.W., Zhao, L.Y., and Zhu, H.P. (2018b). CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers. Computers and Electronics in Agriculture, 149: 121132.

    • Search Google Scholar
    • Export Citation
  • Hongbin, D., Zhang, C., Li, L., Hao, C., Ding, B., Gong, W., and Huang, P. (2018). Application of variable spray technology in agriculture. IOP Conference Series Earth Environmental Sciences, 186: 012007, https://doi.org/10.1088/1755-1315/186/5/012007.

    • Search Google Scholar
    • Export Citation
  • Hossein, M., Saeid, M., Barat, G., and Hassan, M. (2013). Agricultural sustainable development by variable-rate spraying. International Journal of Agronomy and Plant Production, 4(12): 34553462.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.B., Plamondon, C.M., Thomson, S.J., and Reddy, K.N. (2017). Characterizing downwind deposition of the off-target drift from aerially applied glyphosate using RbCl as tracer. International Journal of Agricultural and Biological Engineering, 10(3): 3136.

    • Search Google Scholar
    • Export Citation
  • ISO 22401 (2015). International Standard: Equipment for crop protection e Methods for measurement of potential spray drift from horizontal boom sprayers by the use of a test bench. International Standard Organization, Geneva, Switzerland.

    • Search Google Scholar
    • Export Citation
  • ISO 22866:2005 (2005). Equipment for crop protection-methods for field measurement of spray drift. International Organization for Standardization, Geneva, Switzerland, pp. 117.

    • Search Google Scholar
    • Export Citation
  • Jeon, H.Y. and Zhu, H. (2012). Development of a variable-rate sprayer for nursery liner applications. Transactions of the ASABE, 55(1): 303312.

    • Search Google Scholar
    • Export Citation
  • Jones, G.T., Norsworthy, J.K., and Barber, T. (2019). Off-target movement of diglycolamine dicamba to non-dicamba soybean using practices to minimize physical drift. Weed Technology, 33: 2440.

    • Search Google Scholar
    • Export Citation
  • Khan, F.A., Ghafoor, A., Khan, M.A., Umer Chattha, M., and Kouhanestani, F.K. (2022). Parameter optimization of newly developed self-propelled variable height crop sprayer using response surface methodology (RSM) approach. Agriculture, 12: 408, https://doi.org/10.3390/agriculture12030408.

    • Search Google Scholar
    • Export Citation
  • Killiny, N., Gonzalez-Blanco, P., Santos-Ortega, Y., Al-Rimawi, F., Levy, A., Hijaz, F., Albrecht, U., and Batuman, O. (2019). Tracing penicillin movement in citrus plants using fluorescence-labeled penicillin. Antibiotics, 8: 262.

    • Search Google Scholar
    • Export Citation
  • Kira, O., Dubowski, Y., and Linker, R. (2015). Reconstruction of passive open-path FTIR ambient spectra using meteorological measurements and its application for detection of aerosol cloud drift. Optics Express, 23(15): A916A929, https://doi.org/10.1364/OE.23.00A916.

    • Search Google Scholar
    • Export Citation
  • Kira, O., Linker, R., and Dubowski, Y. (2016a). Detection and quantification of water-based aerosols using active open-path FTIR. Scientific Reports, 6: 25110, https://doi.org/10.1038/srep25110.

    • Search Google Scholar
    • Export Citation
  • Kira, O., Linker, R., and Dubowski, Y. (2016b). Estimating drift of airborne pesticides during orchard spraying using active open path FTIR. Atmospheric Environment, 142: 264270, https://doi.org/10.1016/j.atmosenv.2016.07.056.

    • Search Google Scholar
    • Export Citation
  • Kira, O., Dubowski, Y., and Linker, R. (2018). In-situ open path FTIP measurements of the vertical profile of spray drift from air-assisted sprayer. Biosystems Engineering, 169: 3241, https://doi.org/10.1016/j.biosystemseng.2018.01.010.

    • Search Google Scholar
    • Export Citation
  • Kooij, S., Sijs, R., Denn, M.M., Villermaux, E., and Bonn, D. (2018). What determines the drop size in sprays? Physical Review X, 8(3): 031019.

    • Search Google Scholar
    • Export Citation
  • Kozlowski, T.T. and Winget, C.H. (1963). Patterns of water movement in forest trees. Botanical Gazette, 124: 301311.

  • Kruger, G.R., Klein, R.N., and Ogg, C.L. (2013). Spray drift of pesticides. Nebraska Extension.

  • Kumar, S.S., Lia, C., Christena, C.E., Hogan, C.J., Jr., Fredericks, S.A., and Hong, J. (2019). Automated droplet size distribution measurements using digital inline holography. Journal of Aerosol Science, 137: 105442.

    • Search Google Scholar
    • Export Citation
  • Kuroda, K., Yamane, K., and Itoh, Y. (2018). Cellular level in planta analysis of radial movement of artificially injected caesium in cryptomeria japonica xylem. Trees: Structure and Function, 32: 15051517.

    • Search Google Scholar
    • Export Citation
  • Kuroda, K., Yamane, K., and Itoh, Y. (2021). In planta analysis of the radial movement of minerals from inside to outside in the trunks of standing Japanese cedar (Cryptomeria japonica D. Don) trees at the cellular level. Forests, 12: 251.

    • Search Google Scholar
    • Export Citation
  • La Spina, A., Burton, M.R., Harig, R., Mure, F., Rusch, P., and Jordan, M. (2013). New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system. Journal of Volcanology and Geothermal Research, 249: 6676.

    • Search Google Scholar
    • Export Citation
  • Lamm, R.D., Slaughter, D.C., and Giles, D.K. (2002). Precision weed control system for cotton. Transactions of the American Society of Association Executives, 45(1), https://doi.org/10.13031/2013.7861.

    • Search Google Scholar
    • Export Citation
  • Lan, Y.B., Zhang, H.Y., Wen, S., and Li, S.H. (2018). Analysis and experiment on atomization characteristics and spray deposition of electrostatic nozzle. Transactions of the CSAM, 49(4): 130139.

    • Search Google Scholar
    • Export Citation
  • Lee, W.S., Slaughter, D.C., and Giles, D.K. (1999). Robotic weed control system for tomatoes. Precision Agriculture: 95113.

  • Lewis, R.W., Evans, R.A., Malic, N., Saito, K., and Cameron, N.R. (2016). Polymeric drift control adjuvants for agricultural spraying. Macromolecular Chemistry and Physics, 217(20): 22232242.

    • Search Google Scholar
    • Export Citation
  • Li, L., Heng, L., Xiongkui, H., and Andreas, H. (2012). Development, and experiment of automatic detection device for infrared target. Transactions of the CSAE, 28(12).

    • Search Google Scholar
    • Export Citation
  • Li, H., Zhai, C., Weckler, P., Wang, N., Yang, S., and Zhang, B. (2017). A canopy density model for planar orchard target detection based on ultrasonic sensors. Sensors, 17(31), https://doi.org/10.3390/s17010031.

    • Search Google Scholar
    • Export Citation
  • Li, L.L., He, X.K., Song, J.L., Liu, Y.J., Zeng, A.J., and Liu, Y. (2018). Design and experiment of variable rate orchard sprayer based on laser scanning sensor. International Journal Agricultural and Biological Engineering, 11(1): 101108.

    • Search Google Scholar
    • Export Citation
  • Li, X., Lu, D., Wang, S., Zhang, M., Lei, X., and Lv, X. (2019). Droplet distribution and airflow simulation of a newly designed agriculture twin fluid nozzle. International Agriculture Engineering Journal, 28(2): 194202.

    • Search Google Scholar
    • Export Citation
  • Liu, H. and Zhu, H. (2016). Evaluation of a laser scanning sensor in detection of complex-shaped targets for variable-rate sprayer development. Transactions of the ASABE, 59(5): 11811192, https://doi.org/10.13031/trans.59.11760.

    • Search Google Scholar
    • Export Citation
  • Liu, X.J., Zhou, H.P., and Zheng, J.Q. (2005). Research advances of the technologies for spray drift control of pesticide application. Transactions of the CSAE, 21(1): 186190.

    • Search Google Scholar
    • Export Citation
  • Liu, W.L., Zhou, Z.Y., and Chen, S.D. (2018). Status of aerial electrostatic spraying technology and its application in plant protection UAV. Journal of Agricultural Mechanization Research, 5: 19.

    • Search Google Scholar
    • Export Citation
  • Llorens, J., Gil, E., Llop, J., and Escola, A. (2010). Variable rate dosing in precision viticulture: use of electronic devices to improve application efficiency. Crop Protection, 29: 239248.

    • Search Google Scholar
    • Export Citation
  • Luo, T.Q., Wang, Z., Yang, S.T., and Gao, L.R. (1994a). Numerical model of electrostatic field in electrostatic charged spray. Transactions of the CSAE, 10(4): 9195.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Miller, D.R., Yang, X., Mcmanus, M.L., and Krider, H.M. (1994b). Characteristics of evaporation from water-based bacterial pesticide droplets. Transactions of the ASAE, 37(5): 14731479.

    • Search Google Scholar
    • Export Citation
  • Maciel, C.F.S., Teixeira, M.M., Fernandes, H.C., Zolnier, S., and Cecon, P.R. (2018). Droplet spectrum of a spray nozzle under different weather conditions. Revista Ciência Agronômica, 49: 430436.

    • Search Google Scholar
    • Export Citation
  • Makhnenko, I., Alonzi, E.R., Fredericks, S.A., Colby, C.M., and Dutcher, C.S. (2021). A review of liquid sheet breakup: perspectives from agricultural sprays. Journal of Aerosol Science, 157: 105805, https://doi.org/10.1016/j.jaerosci.2021.105805.

    • Search Google Scholar
    • Export Citation
  • Manandhar, A., Zhu, H., Ozkan, E., and Shah, A. (2020). Techno-economic impacts of using a laser-guided variable-rate spraying system to retrofit conventional constant-rate sprayers. Precision Agriculture, 113: 116.

    • Search Google Scholar
    • Export Citation
  • Mercer, G.N. (2009). Modelling to determine the optimal porosity of shelterbelts for the capture of agricultural spray drift. Environmental Modeling Software, 24: 13491352.

    • Search Google Scholar
    • Export Citation
  • Merkus, H. (2009). Laser diffraction. In: Particle size measurements; particle technology series. Springer, Dordrecht, The Netherlands, pp. 259285.

    • Search Google Scholar
    • Export Citation
  • Miller, P.C.H. and Ellis, M.C.B. (2000). Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Protection, 19(8-10): 609615.

    • Search Google Scholar
    • Export Citation
  • Miller, D.R. and Stoughton, T.E. (2000). Response of spray drift from aerial applications at a forest edge to atmospheric stability. Agricultural and Forest Meteorology, 100(1): 4958.

    • Search Google Scholar
    • Export Citation
  • Miller, P.H.C. and Tuck, C.R. (2005). Factors influencing the performance of spray delivery systems: a review of recent developments. Journal of ASTM International, 2(6): 113, Paper ID JAI12900.

    • Search Google Scholar
    • Export Citation
  • Miller, D.R., Stoughton, T.E., Steinke, W.E., Huddleston, E.W., and Ross, J.B. (2000). Atmospheric stability effects on pesticide drift from an irrigated orchard. Transactions of the ASAE, 43(5): 10571066.

    • Search Google Scholar
    • Export Citation
  • Miller, P.C.H., Tuck, C.R., Murphy, S., and da Costa Ferreira, M. (2008). Measurements of the droplet velocities in sprays produced by different designs of agricultural spray nozzles. In: Proceedings of 22nd European Conference on Liquid Atomization and Spray Systems (ILASS-Europe), Como Lake, Italy, pp. 18, Paper ID ILASS08-8-5.

    • Search Google Scholar
    • Export Citation
  • Miller, P.C.H., Butler, E.M.C., Lane, A.G., Sullivan, C.M., and Tuck, C.R. (2011). Methods for minimizing drift and off-target exposure from boom sprayer applications. Aspects of Applied Biology, 106: 281288.

    • Search Google Scholar
    • Export Citation
  • Minov, S.V., Cointault, F., Vangeyte, J., Pieters, J.G., and Nuyttens, D. (2016). Spray droplet characterization from a single nozzle by high-speed image analysis using an in-focus droplet criterion. Sensors, 16: 218.

    • Search Google Scholar
    • Export Citation
  • Montecchio, L. (2013). A Venturi effect can help cure our trees. Journal of Visualized Experiments, 80: e51199.

  • Monteith, J. and Unsworth, M. (2013). Principles of environmental physics: plants, animals, and the atmosphere. Academic Press, Cambridge, MA.

    • Search Google Scholar
    • Export Citation
  • Mun, R.P., Young, B.W., and Boger, D.V. (1999). Atomisation of dilute polymer solutions in agricultural spray nozzles. Journal of Non-Newtonian Fluid Mechanics, 83(1–2): 163178.

    • Search Google Scholar
    • Export Citation
  • Nuyttens, D., Sonck, B., De Schampheleire, M., Steurbaut, W., Baetens, K., Verboven, P., Nicolai, B., and Ramon, H. (2005). Spray drift as affected by meteorological conditions. Communications in Agricultural and Applied Biological Sciences, 70: 947959.

    • Search Google Scholar
    • Export Citation
  • Nuyttens, D., Baetens, K., De Schampheleire, M., and Sonck, B. (2006a). PDPA laser-based characterization of agricultural sprays. Agricultural Engineering International: CIGR Journal, 8: 118.

    • Search Google Scholar
    • Export Citation
  • Nuyttens, D., Schampheleire, M.D., Steurbaut, W., Baetens, K., Verboven, P., and Nicolai, B. (2006b). Characterization of agricultural sprays using laser techniques. Aspects of Applied Biology, International advances in pesticide application, 77: 18.

    • Search Google Scholar
    • Export Citation
  • Nuyttens, D., De Schampheleire, M., Baetens, K., and Sonck, B. (2007). The influence of operator-controlled variables on spray drift from field crop sprayers. Transactions of the ASABE, 50(4): 11291140.

    • Search Google Scholar
    • Export Citation
  • Nuyttens, D., Zwertvaegher, I.K.A., and Dekeyser, D. (2017). Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment method. Biosystems Engineering, 154: 1424.

    • Search Google Scholar
    • Export Citation
  • Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Tona, E., and Ulbrich, H. (2016). Selective spraying of grapevines for disease control using a modular agricultural robot. Biosystems Engineering, 146: 203215.

    • Search Google Scholar
    • Export Citation
  • Palacin, J., Palleja, T., Tresanch, M., and Sanz, R. (2007). Real-time tree-foliage surface estimation using a ground laser scanner. IEEE Transactions on Instrumentation and Measurement, 56(4): 13771383.

    • Search Google Scholar
    • Export Citation
  • Palleja, T. and Landers, A.J. (2015). Real-time canopy density estimation using ultrasonic envelope signals in the orchard and vineyard. Computers and Electronics in Agriculture, 115: 108117.

    • Search Google Scholar
    • Export Citation
  • Partel, V., Kakarla, S.C., and Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computer and Electronics in Agriculture, 157: 339350, https://doi.org/10.1016/j.compag.2018.12.048.

    • Search Google Scholar
    • Export Citation
  • Pascuzzi, S., Manetto, G., Santoro, F., and Cerruto, E. (2021). A brief review of nozzle spray drops size measurement techniques. In: Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021.

    • Search Google Scholar
    • Export Citation
  • Patel, M.K. (2016). Technological improvements in electrostatic spraying and its impact to agriculture during the last decade and future research perspectives – a review. Engineering in Agriculture, Environment and Food, 9: 92100, https://doi.org/10.1016/j.eaef.2015.09.006.

    • Search Google Scholar
    • Export Citation
  • Patel, M.K., Kundu, M., Sahoo, H.K., and Nayak, M.K. (2016). Enhanced performance of an air-assisted electrostatic nozzle: role of electrode material and its dimensional considerations in spray charging. Engineering in Agriculture, Environment and Food, 9(4): 332338, https://doi.org/10.1016/j.eaef.2016.05.002.

    • Search Google Scholar
    • Export Citation
  • Perry, T., Santamour, F., Stipes, R., Shear, T., and Shigo, A. (1991). Exploring alternatives to tree injection. Journal of Arboriculture, 17: 217226.

    • Search Google Scholar
    • Export Citation
  • Petrovic, D., Jurisic, M., Tadic, V., Plascak, I., and Barac, Z. (2018). Different sensor systems for the application of variable rate technology in permanent crops. Technical Journal, 12(3): 188195, https://doi.org/10.31803/tg-20180213125928.

    • Search Google Scholar
    • Export Citation
  • Picot, J.J., Chitrangad, B., and Henderson, G. (1981). Evaporation rate correlation for atomized droplets (for proper aerial application of insecticide sprays). Transactions of the ASAE, 24(3): 552554.

    • Search Google Scholar
    • Export Citation
  • Pieloth, D., Rodeck, M., Schaldach, G., and Thommes, M. (2023). Categorization of sprays by image analysis with convolutional neuronal networks. Chemical Engineering and Technology, 46: 264269.

    • Search Google Scholar
    • Export Citation
  • Privitera, S., Manetto, G., Pascuzzi, S., Pessina, D., and Cerruto, E. (2023). Drop size measurement techniques for agricultural sprays: a state-of-the-art review. Agronomy, 13: 678, https://doi.org/10.3390/agronomy13030678.

    • Search Google Scholar
    • Export Citation
  • Qin, K., Tank, H., Wilson, S., Downer, B., and Liu, L. (2010). Controlling droplet size distribution using oil emulsions in agricultural sprays. Atomization Spray, 20: 227239.

    • Search Google Scholar
    • Export Citation
  • Ranta, O., Marian, O., Muntean, M.V., Molnar, A., Ghet, E.A.B., Crisan, V., Stanila, S., and Rittner, T. (2021). Quality analysis of some spray parameters when performing treatments in vineyards in order to reduce environment pollution. Sustainability, 13: 7780.

    • Search Google Scholar
    • Export Citation
  • Roach, W.A. (1939). Plant injection as a physiological method. Annals of Botany, 3: 155277.

  • Robot spraying technology.

  • Rojo-Baio, F.H., Antuniassi, U.R., Castilho, B.R., Teodoro, P.E., and da Silva, E.E. (2019). Factors affecting aerial spray drift in the Brazilian Cerrado. Plos One, 14, https://doi.org/10.1371/journal.pone.0212289.

    • Search Google Scholar
    • Export Citation
  • Ru, Y., Zhu, C.Y., and Bao, R. (2014). Spray drift model of droplets and analysis of influencing factors based on wind tunnel. Transactions of the CSAM, 45(10): 6672.

    • Search Google Scholar
    • Export Citation
  • Sachs, R.M., Nyland, G., Hackett, W.P., Coffelt, J., Debie, J., and Giannini, G. (1977). Pressurized injection of aqueous solutions into tree trunks. Scientia Horticulturae, 6: 297310.

    • Search Google Scholar
    • Export Citation
  • Salcedo, R., Vallet, A., Granell, R., Garcera, C., Molto, E., and Chueca, P. (2017). Eulerian-Lagrangian model of the behaviour of droplets produced by an air-assisted sprayer in a citrus orchard. Biosystems Engineering, 154: 7691.

    • Search Google Scholar
    • Export Citation
  • Salcedo, R., Zhu, H., Ozkan, E., Falchieri, D., Zhang, Z., and Wei, Z. (2021). Reducing ground and airbirne drift losses in young apple orchards with PWM-controlled spray systems. Computers and Electronics in Agriculture, 189: 106389.

    • Search Google Scholar
    • Export Citation
  • Sanchez, Z.M.A. and Escobar, R.F. (2000). Injector-size and the time of application affects uptake of tree trunk-injected solutions. Scientia Horticulturae, 84: 163177.

    • Search Google Scholar
    • Export Citation
  • Sanz, R., Rosell, J.R., Llorens, J., Gil, E., and Planas, S. (2013). Relationship between tree row LiDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D dynamic measurement system. Agriculture and Forestry Meteorology, 171–172(15): 153162.

    • Search Google Scholar
    • Export Citation
  • Seol, J., Kim, J., and Son, A.H.I. (2022). Spray drift segmentation for intelligent spraying system using 3D point cloud deep learning framework. Methods: a Companion To Methods in Enzymology, 10: 7726377271, https://doi.org/10.1109/ACCESS.2022.3192028.

    • Search Google Scholar
    • Export Citation
  • Shang, Q., Liao, K., Liu, H., and Zhao, B. (2011). Study on structure of needle head and seal mechanism of tree trunk injection. In: Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering, TMEE 2011, Changchun, China, 16–18 December 2011, pp. 813816.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., Zhu, H., Liu, H., Chen, Y., and Ozkan, E. (2017). Development of a laser-guided, embedded-computer-controlled, air-assisted precision sprayer. Transactions of the ASABE, 60(6): 18271838.

    • Search Google Scholar
    • Export Citation
  • Sijs, R., Kooij, S., Holterman, H.J., van de Zande, J., and Bonn, D. (2021). Drop size measurement techniques for sprays: comparison of image analysis, phase Doppler particle analysis, and laser diffraction. AIP Advances, 11: 015315.

    • Search Google Scholar
    • Export Citation
  • Silva, J.E., Zhu, H., and da Cunha, J.P.A.R. (2018). Spray Outputs from a variable-rate sprayer manipulated with PWM solenoid valves. Transactions of the ASABE, 34(3): 527534.

    • Search Google Scholar
    • Export Citation
  • Sinclair, W.A. and Larsen, A.O. (1980). Wood characteristics related to “injectability” of trees. Journal of Arboriculture, 7: 610.

    • Search Google Scholar
    • Export Citation
  • Sirmour, A. and Verma, A. (2019). Droplet Size characterization of agricultural sprays using laser diffraction. International Journal of Chemical Studies, 7: 28952899.

    • Search Google Scholar
    • Export Citation
  • Sogaard, H.T. and Lund, I. (2007). Application accuracy of a machine vision-controlled robotic micro-dosing system. Biosystems Engineering, 96(3): 315322, https://doi.org/10.1016/j.biosystemseng.2006.11.009.

    • Search Google Scholar
    • Export Citation
  • Song, J.L., Liu, Y.J., Zhang, J., He, X.K., Zeng, A.J., and Herbst, A. (2011). Drift mechanism of flat fan nozzle. Transactions of the CSAM, 42(6): 6369.

    • Search Google Scholar
    • Export Citation
  • Stainier, C., Destain, M.F., Schiffers, B., and Lebeau, F. (2006). Droplet size spectra and drift effect of two phenmedipham formulations and four adjuvants’ mixtures. Crop Protection, 25(12): 12381243.

    • Search Google Scholar
    • Export Citation
  • Sumner, P.E. (1997). Reducing spray drift. In: Cooperative extension service. The University of Georgia College of Agricultural and Environmental Sciences, Athens, GA, USA.

    • Search Google Scholar
    • Export Citation
  • Tackenberg, M., Christa, V., and Karl, H.D. (2016). Sensor-based variable-rate fungicide application in winter wheat. Pest Management Science, 72(10): 188896, https://doi.org/10.1002/ps.4225.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., Chen, L.P., Zhang, R.R., Zhang, B., Yi, T.C., and Xu, M. (2016). Atomization characteristics of normal flat fan nozzle and air induction nozzle under high-speed airflow conditions. Transactions of the CSAE, 32(22): 121128.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., Chen, L., Zhang, R., Xu, G., Yi, T., and Zhang, B. (2018). Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles. Frontiers of Agricultural Science and Engineering, 5(4): 422454, https://doi.org/10.15302/J-FASE-2017169.

    • Search Google Scholar
    • Export Citation
  • Tattar, T. and Tattar, S. (1999). Evidence for the downward movement of materials injected into trees. Arboriculture & Urban Forestry, 25: 325332.

    • Search Google Scholar
    • Export Citation
  • Thistle, H.W. (2005). Meteorological concepts in the drift of pesticides. In: Proceedings of the International Conference on Pesticide Application for Drift Management, Hawaii, pp. 156162.

    • Search Google Scholar
    • Export Citation
  • Tian, L. (2002). Development of a sensor-based precision herbicide application system. Computer and Electronics in Agriculture, 36(2): 133149, https://doi.org/10.1016/S0168-1699(02)00097-2.

    • Search Google Scholar
    • Export Citation
  • Todd, L.A., Ramanathan, M., Mottus, K., Katz, R., Dodson, A., and Mihlan, G. (2001). Measuring chemical emissions using open path Fourier transform infrared (OP-FTIR) spectroscopy and computer-assisted tomography. Atmospheric Environment, 35(11): 19371947.

    • Search Google Scholar
    • Export Citation
  • Torrent, X., Garcerá, C., Moltó, E., Chueca, P., Abad, R., Grafulla, C., Román, C., and Planas, S. (2017). Comparison between standard and drift reducing nozzles for pesticide application in citrus: part I. effects on wind tunnel and field spray drift. Crop Protection, 96: 130143.

    • Search Google Scholar
    • Export Citation
  • USEPA (2021). Introduction to pesticide drift, Available online: https://www.epa.gov/reducing-pesticide-drift/introduction-pesticidedrift (accessed on 5 January 2021).

    • Search Google Scholar
    • Export Citation
  • Vernay, C., Ramos, L., Douzals, J.P., Goyal, R., Castaing, J.C., and Ligoure, C. (2016). Drop impact experiment as a model experiment to investigate the role of oil-in-water emulsions in controlling the drop size distribution of an agricultural spray. Atomization and Sprays, 26(8): 827851.

    • Search Google Scholar
    • Export Citation
  • Vijayakumar, V., Ampatzidis, Y., Schueller, J.K., and Burks, T. (2023). Smart spraying technologies for precision weed management: a review. Smart Agricultural Technology, 6: 100337, https://doi.org/10.1016/j.atech.2023.100337.

    • Search Google Scholar
    • Export Citation
  • Wang, X.N., He, X.K., Song, J.L., and Herbst, A. (2015). Effect of adjuvant types and concentration on spray drift potential of different nozzles. Transactions of the CSAE, 31(22): 4955.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Lan, Y.B., Hoffmann, W.C., Fritz, B.K., Chen, D., and Wang, S.M. (2016). Design of variable spraying system and influencing factors on droplets deposition of small UAV. Transactions of the CSAM, 47(1): 1522.

    • Search Google Scholar
    • Export Citation
  • Wang, X.N., He, X.K., Wang, C.L., Wang, Z.C., Li, L.L., and Wang, S.L. (2017). Spray drift characteristics of fuel-powered single-rotor UAV for plant protection. Transactions of the CSAE, 33(1): 117123.

    • Search Google Scholar
    • Export Citation
  • Wei, J. and Salyani, M. (2005). Development of a laser scanner for measuring tree canopy characteristics: phase 2. Foliage density measurement. Transaction of the ASAE, 48(4): 15951601.

    • Search Google Scholar
    • Export Citation
  • Wise, J.C., VanWoerkom, A.H., Acimovic, S.G., Sundin, G.W., Cregg, B.M., and Vandervoort, C.V. (2014). Trunk injection: a discriminating delivering system for horticulture crop IPM. Entomology, Ornithology & Herpetology: Current Research, 3: 1.

    • Search Google Scholar
    • Export Citation
  • Wolf, R. (2013). Drift-reducing strategies and practices for ground application. technology & health care official. Journal of the European Society for Engineering & Medicine, 19(1): 120.

    • Search Google Scholar
    • Export Citation
  • Yang, L. and Bain, C.D. (2009). Liquid jet instability and dynamic surface tension effect on breakup. In: NIP & Digital Fabrication Conference, Vol. 2009. Society for Imaging Science and Technology, pp. 7982.

    • Search Google Scholar
    • Export Citation
  • Zaman, Q.U., Travis, J.E., Arnold, W.S., David, C.P., Young, K.C., Scott, M.R., and Aitazaz, A.F. (2011). Development of prototype automated variable rate sprayer for real-time spot-application of agrochemicals in wild blueberry fields. Computer and Electronics in Agriculture, 76: 175182, https://doi.org/10.1016/j.compag.2011.01.014.

    • Search Google Scholar
    • Export Citation
  • Zhang, S.C., Xue, X.Y., Qin, W.C., Sun, Z., Ding, S.M., and Zhou, L.X. (2015). Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter. Transactions of the CSAE, 31(3): 8793.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.L., Lan, Y.B., Fritz, B.K., and Xue, X.Y. (2016). Development of aerial electrostatic spraying systems in the United States and applications in China. Transactions of the CSAE, 32(10): 17.

    • Search Google Scholar
    • Export Citation
  • Zhu, H. and Ozkan, H.E. (2019). An update on the intelligent spraying system development for fruit and nursery crop applications. In: Cross, J. and Wenneker, M. (Eds.), 15th workshop on spray application and precision technology in fruit growing. East Malling, NIAB EMR.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Felföldi, József

Chair of the Editorial Board Szendrő, Péter

Editorial Board

  • Beke, János (Szent István University, Faculty of Mechanical Engineerin, Gödöllő – Hungary)
  • Fenyvesi, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Szendrő, Péter (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Felföldi, József (Szent István University, Faculty of Food Science, Budapest – Hungary)

 

Advisory Board

  • De Baerdemaeker, Josse (KU Leuven, Faculty of Bioscience Engineering, Leuven - Belgium)
  • Funk, David B. (United States Department of Agriculture | USDA • Grain Inspection, Packers and Stockyards Administration (GIPSA), Kansas City – USA
  • Geyer, Martin (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Horticultural Engineering, Potsdam - Germany)
  • Janik, József (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Kutzbach, Heinz D. (Institut für Agrartechnik, Fg. Grundlagen der Agrartechnik, Universität Hohenheim – Germany)
  • Mizrach, Amos (Institute of Agricultural Engineering. ARO, the Volcani Center, Bet Dagan – Israel)
  • Neményi, Miklós (Széchenyi University, Department of Biosystems and Food Engineering, Győr – Hungary)
  • Schulze-Lammers, Peter (University of Bonn, Institute of Agricultural Engineering (ILT), Bonn – Germany)
  • Sitkei, György (University of Sopron, Institute of Wood Engineering, Sopron – Hungary)
  • Sun, Da-Wen (University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Dublin – Ireland)
  • Tóth, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)

Prof. Felföldi, József
Institute: MATE - Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Measurements and Process Control
Address: 1118 Budapest Somlói út 14-16
E-mail: felfoldi.jozsef@uni-mate.hu

Indexing and Abstracting Services:

  • CABI
  • ERIH PLUS
  • SCOPUS

2023  
Scopus  
CiteScore 1.8
CiteScore rank Q2 (General Agricultural and Biological Sciences)
SNIP 0.497
Scimago  
SJR index 0.258
SJR Q rank Q3

Progress in Agricultural Engineering Sciences
Publication Model Hybrid
Submission Fee none
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Article Processing Charge 900 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 173 EUR / 190 USD
Print + online subscription: 200 EUR / 220 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles can be purchased at the prices indicated.

Progress in Agricultural Engineering Sciences
Language English
Size B5
Year of
Foundation
2004
Volumes
per Year
1
Issues
per Year
1
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-335X (Print)
ISSN 1787-0321 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 97 5 6
Sep 2024 1803 3 6
Oct 2024 2008 3 4
Nov 2024 526 0 0
Dec 2024 244 4 6
Jan 2025 354 1 3
Feb 2025 124 1 0