Authors:
S. Cubero Instituto Valenciano de Investigaciones Agrarias Centro de Agroingeniería Cra. Moncada-Naquera, Km. 5 46113 Moncada Spain

Search for other papers by S. Cubero in
Current site
Google Scholar
PubMed
Close
,
E. Moltó Instituto Valenciano de Investigaciones Agrarias Centro de Agroingeniería Cra. Moncada-Naquera, Km. 5 46113 Moncada Spain

Search for other papers by E. Moltó in
Current site
Google Scholar
PubMed
Close
,
A. Gutiérrez Instituto Valenciano de Investigaciones Agrarias Centro de Agroingeniería Cra. Moncada-Naquera, Km. 5 46113 Moncada Spain

Search for other papers by A. Gutiérrez in
Current site
Google Scholar
PubMed
Close
,
N. Aleixos Universidad Politécnica de Valencia Instituto en Bioingeniería y Tecnología Orientada al Ser Humano Camino de Vera s/n 46022 Valencia Spain

Search for other papers by N. Aleixos in
Current site
Google Scholar
PubMed
Close
,
O. García-Navarrete

Search for other papers by O. García-Navarrete in
Current site
Google Scholar
PubMed
Close
,
F. Juste Instituto Valenciano de Investigaciones Agrarias Centro de Agroingeniería Cra. Moncada-Naquera, Km. 5 46113 Moncada Spain

Search for other papers by F. Juste in
Current site
Google Scholar
PubMed
Close
, and
J. Blasco Instituto Valenciano de Investigaciones Agrarias Centro de Agroingeniería Cra. Moncada-Naquera, Km. 5 46113 Moncada Spain

Search for other papers by J. Blasco in
Current site
Google Scholar
PubMed
Close
Restricted access

The best alternative for reducing citrus production costs is mechanization. Machine vision is a reliable technology for the automatic inspection of fresh fruits and vegetables that can be adapted to harvesting machines. In these, fruits can be inspected before sending them to the packinghouse and machine vision provides important information for subsequent processing and avoids spending further resources in non-marketable fruit. The present work describes a computer vision system installed on a harvesting machine developed jointly by IVIA and a Spanish enterprise. In this machine, hand pickers directly drop the fruit as they collect it, which results in an important increase of productivity. The machine vision system is placed over rollers in order to inspect the produce, and separate those that can be directly sent to the fresh market from those that do not meet minimal quality requirements but can be used by the processing industry, based on color, size and the presence of surface damages. The system was tested under field conditions.

  • Baeten, J., Donné, K., Boedrij, S., Beckers, W. and Claesen, E. (2008) Autonomous fruit picking machine: a robotic apple harvester. Tracks in Advanced Robotics 42: 531–539.

    Claesen E. , 'Autonomous fruit picking machine: a robotic apple harvester ' (2008 ) 42 Tracks in Advanced Robotics : 531 -539 .

    • Search Google Scholar
  • Blasco, J., Aleixos, N., Roger, J. M., Rabatel, G. and Moltó, E. (2002) Robotic weed control using machine vision. Biosystems Engineering 83(2): 149–157.

    Moltó E. , 'Robotic weed control using machine vision ' (2002 ) 83 Biosystems Engineering : 149 -157 .

    • Search Google Scholar
  • Brown, G.K. (2002) New mechanical harvesters for the Florida citrus juice industry. Hort Technology 15: 69–72.

    Brown G.K. , 'New mechanical harvesters for the Florida citrus juice industry ' (2002 ) 15 Hort Technology : 69 -72 .

    • Search Google Scholar
  • Coppock, G. E. and Jutras, P. J. (1960) An investigation of the mobile picker’s platform approach. To partial mechanization of citrus fruit picking. Florida State Horticultural Society, 73: 258–263.

    Jutras P. J. , 'An investigation of the mobile picker’s platform approach. To partial mechanization of citrus fruit picking ' (1960 ) 73 Florida State Horticultural Society : 258 -263 .

    • Search Google Scholar
  • Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J. and Blasco, J. (2010) Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology DOI 10.1007/s11947-010-0411-8: In press.

  • Edan, Y., Rogozin, D., Flash, T. and Miles, G. E. (2000) Robotic melon harvesting. IEEE Transactions on Robotics and Automation 16(6): 831–834.

    Miles G. E. , 'Robotic melon harvesting ' (2000 ) 16 IEEE Transactions on Robotics and Automation : 831 -834 .

    • Search Google Scholar
  • Freeman, H. (1961) On the encoding of arbitrary geometric configurations. IEEE Trans. Elect. Computers EC-10: 260–268

    Freeman H. , 'On the encoding of arbitrary geometric configurations ' (1961 ) EC-10 IEEE Trans. Elect. Computers : 260 -268 .

    • Search Google Scholar
  • Jiménez-Cuesta, M., Cuquerella, J. and Martínez-Jávega, J. M. (1981) Determination of a color index for citrus fruit degreening. In: Proceedings of the International Society of Citriculture, (2), 750–753.

  • Jutras, P. J. and Coppock, G. E. (1958) Mechanization of citrus fruit picking. Florida State Horticultural Society, 71: 201–204

    Coppock G. E. , 'Mechanization of citrus fruit picking ' (1958 ) 71 Florida State Horticultural Society : 201 -204 .

    • Search Google Scholar
  • Muscato, G., Prestifilippo, M. Abbate, N. and Rizzuto, I. (2005) A prototype of an orange picking robot: past history and experimental results. Industrial Robot 32(2): 128–138.

    Rizzuto I. , 'A prototype of an orange picking robot: past history and experimental results ' (2005 ) 32 Industrial Robot : 128 -138 .

    • Search Google Scholar
  • Ruiz-Altisent, M., Ortiz-Cañavate, J. and Valero, C. (2007) Fruit and vegetables harvesting systems. In: Production practices and quality assessment of food crops, Vol. 1: preharvest practice, ed. Ramdane Dris and Shri Mohan Jain, 261–285.

  • Scarfe, A., Flemmer, R., Bakker, H. and Flemmer, C. (2009) Development of an autonomous kiwifruit picking robot. In: Proc. of the 4th International Conference on Autonomous Robots and Agents (ICARA 2009), 380–384. Wellington, USA.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Felföldi, József

Chair of the Editorial Board Szendrő, Péter

Editorial Board

  • Beke, János (Szent István University, Faculty of Mechanical Engineerin, Gödöllő – Hungary)
  • Fenyvesi, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Szendrő, Péter (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Felföldi, József (Szent István University, Faculty of Food Science, Budapest – Hungary)

 

Advisory Board

  • De Baerdemaeker, Josse (KU Leuven, Faculty of Bioscience Engineering, Leuven - Belgium)
  • Funk, David B. (United States Department of Agriculture | USDA • Grain Inspection, Packers and Stockyards Administration (GIPSA), Kansas City – USA
  • Geyer, Martin (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Horticultural Engineering, Potsdam - Germany)
  • Janik, József (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Kutzbach, Heinz D. (Institut für Agrartechnik, Fg. Grundlagen der Agrartechnik, Universität Hohenheim – Germany)
  • Mizrach, Amos (Institute of Agricultural Engineering. ARO, the Volcani Center, Bet Dagan – Israel)
  • Neményi, Miklós (Széchenyi University, Department of Biosystems and Food Engineering, Győr – Hungary)
  • Schulze-Lammers, Peter (University of Bonn, Institute of Agricultural Engineering (ILT), Bonn – Germany)
  • Sitkei, György (University of Sopron, Institute of Wood Engineering, Sopron – Hungary)
  • Sun, Da-Wen (University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Dublin – Ireland)
  • Tóth, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)

Prof. Felföldi, József
Institute: MATE - Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Measurements and Process Control
Address: 1118 Budapest Somlói út 14-16
E-mail: felfoldi.jozsef@uni-mate.hu

Indexing and Abstracting Services:

  • CABI
  • ERIH PLUS
  • SCOPUS

2023  
Scopus  
CiteScore 1.8
CiteScore rank Q2 (General Agricultural and Biological Sciences)
SNIP 0.497
Scimago  
SJR index 0.258
SJR Q rank Q3

Progress in Agricultural Engineering Sciences
Publication Model Hybrid
Submission Fee none
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Article Processing Charge 900 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 173 EUR / 190 USD
Print + online subscription: 200 EUR / 220 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles can be purchased at the prices indicated.

Progress in Agricultural Engineering Sciences
Language English
Size B5
Year of
Foundation
2004
Volumes
per Year
1
Issues
per Year
1
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-335X (Print)
ISSN 1787-0321 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 18 0 0
Sep 2024 46 0 0
Oct 2024 229 0 0
Nov 2024 99 0 0
Dec 2024 38 0 0
Jan 2025 59 0 0
Feb 2025 21 0 0