View More View Less
  • 1 Organic Chemistry and Analytical Laboratory (LCOA), Faculty of Sciences and Techniques (FST), University of Sultan Moulay Slimane (USMS), 23000Béni-Mellal, Morocco
  • | 2 Department of Chemistry and Environment, Faculty of Sciences and Techniques (FST), University of Sultan Moulay Slimane (USMS), 23000Béni-Mellal, Morocco
  • | 3 Higher School of Technology, EST-Fkih ben Saleh, University of Sultan Moulay Slimane (USMS), 23000Béni-Mellal, Morocco
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $173.00

Abstract

In this paper, thermal degradation (TGA) and pyrolysis studies of sunflower shell biomass (SSB), eucalyptus biomass (EB), wheat straw biomass (WSB), and peanut shell biomass (PSB) were carried out using the thermogravimetric analysis and stainless steel tubular reactor. Thermal degradation of all biomass wastes was examined at a heating rate of 10 °C/min in nitrogen atmosphere between 20 and 800 °C. Experiments of pyrolysis were carried out in a tubular reactor from 300 to 700 °C with a heating rate of 10 °C/min, a particle size of 0.1–0.3 mm and nitrogen flow rate of 100 mL.min−1, which the aim to study how temperature affects liquid, solid, and gas products. The results of this work showed that three stages have been identified in the thermal decomposition of SSB, EB, WSB, and PSB wastes. The first stage occurred at 120–158 °C, the second stage, which corresponds to hemicellulose and cellulose's degradation, occurred in temperatures range from 139 to 480 °C for hemicellulose, and from 233 to 412 °C for cellulose, while the third stage occurred at 534–720 °C. It was concluded that temperature has a significant effect on product yields. The maximum of bio-oil yields of 37.55, 30.5, 46.96, and 50.05 wt% for WSB, PSB, SSB, and EB, were obtained at pyrolysis temperature of 500 °C (SSB, PSB, and WSB) and 550 °C (EB). Raw biomass, solid and liquid products obtained were characterized by elemental analysis, Fourier transformed infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and x-ray diffraction (XRD). The analysis of solid and liquid products showed that bio-oils and bio-chars from agricultural biomass wastes could be prospective sources of renewable fuels production and value added chemical products.

  • Akhtar, J. and Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable & Sustainable Energy Reviews, 16: 51015109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asadullah, M., Rahman, M. A., Ali, M. M., Rahman, M. S., Morin, M. A., Sultan, M. B., and Alam, M. R. (2007). Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel, 86: 25142520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balagurumurthy, B., Srivastava, V., Vinit Kumar, J., Biswas, B., Singh, R., Gupta, P., Kumar, S.K.L.N., Singh, R., and Bhaskar, T. (2015). Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments. Bioresource Technology, 88: 273279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayramzadeh, S. and Aghaei, P. (2020). Technology integration in complex healthcare environments: a systematic literature review. Applied Ergonomics, 92: 103351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedek, J., Sebestyen, T.T., and Bartok, B. (2018). Evaluation of renewable energy sources in peripherial areas and renewable energy based rural development. Renewable & Sustainable Energy Reviews, 90: 516535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, B., Singh, R., Kumar, J., Khan, A.A., Krishna, B.B., and Bhaskar, T. (2016). Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals. Bioresource Technology, 213: 319326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, B., Singh, R., Kumar, J., Khan, A. A., Krishna, B. B., and Bhaskar, T.(2017). Slow pyrolysis of prot, alkali and dealkalinelignins for production of chemicals. Bioresource Technology, 213: 319326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceranic, M., Kosanic, T., Djuranovic, D., Kaludjerovic, Z., Djuric, S., Gojkovic, P., and Bozickovic, R. (2016). Experimental investigation of corn cob pyrolysis. Journal of Renewable and Sustainable Energy, http://dx.doi.org/10.1063/1.4966695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Hu, M., Zhu, X., Guo, D., Liu, S., Hu, Z., Xiao, Bo., Wang, J., and Laghari, M. (2015). Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology, 192: 441450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Liu, C., Ma, W., Zhang, X., Li, Y., Yan, B., and Zhou, W. (2014). Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource Technology, 166: 500507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, L., Zeng, Z., Tian, X., Jiang, L., Yu, Z., Wu, Q., Liu, Y., and Ruan, R. (2019). Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst. Journal of Analytical and Applied Pyrolysis, 143: 104691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demiral, I. and Ayan, E.A. (2011). Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresource Technology, 102: 39463951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dostal, Z. and Ladanyi, L. (2018). Demands on energy storage for renewable power sources. Journal of Energy Storage, 18: 250255.

  • Duan, D., Zhang, Y., Wang, Y., Lei, H., Wang, Q., and Ruan, R. (2020). Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons. Energy, 209: 118454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erdil, A. and Erbijik, H. (2015). Renewable energy sources of Turkey and assessment of sustainability. Procedia-Social and Behavioral Science, 207: 669679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guida, M.Y. (2017). Bio-oil and bio-char feedstocks from pyrolysis of olive mill wastes, such as; olive mill solid waste and olive mill wastewater. India. Journal of Environmental Protection, 37(8): 632646.

    • Search Google Scholar
    • Export Citation
  • Guida, M.Y., Bouaik, H., EL Mouden, L., Moubarik, A., Aboulkas, A., El Harfi, K., and Hannioui, A. (2017). Utilization of starink approach and avrami theory to evaluate the kinetic parameters of the pyrolysis of olive mill solid waste and olive mill wastewater. Journal of Advanced Chemical Engineering, 7: 18.

    • Search Google Scholar
    • Export Citation
  • Guida, M.Y., Bouaik, H., Tabal, A., Hannioui, A., Solhy, A., Barakat, A., Aboulkas, A., and El harfi, K. (2015). Thermochemical treatment of olive mill solid waste and olive mill wastewater: kinetic study. Journal of Thermal Analysis and Calorimetry, 123: 16571666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guida, M.Y. and Hannioui, A. (2016). A review on thermochemical treatment of biomass: pyrolysis of olive mill wastes in comparison with other types of biomass Progress in. Agricultural Engineering Sciences, 12(1): 123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guida, M.Y., Laghchioua, F.E., and Hannioui, A. (2018). Pyrolysis of brown algae (bifurcariabifurcata) in a stainless steel tubular reactor: from a review to a case study. Progress in Agricultural Engineering Sciences, 14: 3160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guida, M. Y., Lanaya, S. E., Laghchioua, F. E., Rbihi, Z., and Hannioui, A. (2020). Production of bio-oil and bio-char from pyrolysis of sawdust wood waste (SWW). Progress in Agricultural Engineering Sciences, 16(1): 6180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guida, M.Y., Lanaya, S.E., Rbihi, Z., and Hannioui, A. (2019). Thermal degradation behaviors of sawdust wood waste: pyrolysis kinetic and mechanism. Journal of Materials and Environmental Science, 10(8): 742755.

    • Search Google Scholar
    • Export Citation
  • Heo, H.S., Park, H.J., Park, Y.K., Ryv, E., Suh, D.J., Suh, Y.W., Yim, J.H., and Kim, S.S. (2010). Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource Technology, 101: S91S96.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.F., Chiueh, P.T., and Lo, S.L. (2016). A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research, 26(3): 103109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ioannidou, O., Zabaniotou, A., Antonakou, E. V., Papazisi, K. M., Lappas, A. A., and Athanassiou, C. (2009). Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renewable and Sustainable Energy Reviews, 13: 750762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, H., Khan, I., and Tienbinh, T. (2020). The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: a panel quantile regression approach. Energy Reports, 6: 859867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaas, M., Greenhalf, C., Ouadi, M., Jahangiri, H., Hornung, A., Briens, C., and Berruti, F. (2020). The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results in Engineering, 7: 100165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, R., Gera, P., Jha, M. K., and Bhaskar, T.(2018). Pyrolysis kinetics and thermodynamic parameters of castor (Ricinuscommunis) residue using thermogravimetric analysis. Bioresource Technology, 250: 4228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., and Dastjerdi, B. (2020). Lignocellulosic biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop in fuels. Renewable and Sustainable Energy Reviews, 123: 109763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar Varma, A., Thakur, L. S., Shankar, R., and Mondal, P.(2019). Pyrolysis of wood sawdust: effects of process parameters on products yield and characterization of products. Waste Management, 89: 224235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.K., Tsai, W.T., Tsai, Y.L., and Lin, S.H. (2010). Pyrolysis of napier grass in an introduction heating reactor. Journal of Analytical and Applied Pyrolysis, 88(2): 110116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liew, J. X., Minh Loy, A. C., Fui Chin, B. L., Ainouss, A., Shahbaz, M., Al-Ansari, T., Govindan, R., and Chai, Y. H. (2021). Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renewable Energy, 170: 948963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majhi, A., Sharma, Y.K., Naik, D.V., and Chauchan, R. (2015). The production and evaluation of bio-oil obtained from the jatrophacurcas cake. Energy Sources Part A Recovery Utilization and Environmental Effects, 37(16): 17821789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malakar, A., Kanel, S. R., Ray, C., Snow Daniel, D., and Nadagouda, M. N. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: a review. Science of Total Environment, 759: 143470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meshitsuka, G. and Isogai, A. (1996). Chemical structures of cellulose, hemicellulose and lignin. In: Hon, D.N. (Ed.), Chemical modification of lignocellulosic materials. Marcel Dekker Inc., New York, pp. 1134.

    • Search Google Scholar
    • Export Citation
  • Minkova, V., Razvigorova, M., Bjornbom, E., Zanzi, R., Budinova, T., and Petrov, N. (2001). Effect of water vapour and biomass nature on the yield and quality of pyrolysis products from biomass. Fuel Processing Technology, 70: 5361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moham, D., Pittman, C.U., and Steel, P.H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20: 848889.

  • Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., and Hicks, K. B. (2010). Bio-oil and bio char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 34: 6774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, C.A., Strahan, G.D., and Boateng, A.A. (2009). Characterization of various fast pyrolysis bio-oils by NMR spectroscopy. Energy Fuels, 23: 27072718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozbay, N., Putun, A.E., Uzun, B.B., and Putun, E. (2001). Biocrude from biomass: pyrolysis of cottonseed cake. Renewable Energy, 24(3–4): 615625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Lee, Y., Ryu, C., and Park, Y.K. (2014). Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Bioresource Technology, 155: 6370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parthasarathy, P. and Narayanan, S. (2015). Effect of combined slow pyrolysis and steam gasification of sugar cane bagasse on hydrogen generation. Korean Journal of Chemical Engineering, 32: 22362246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phuakpunk, K., Chalermsinsuwan, B., and Assabumrungrat, S. (2020). Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports, 6: 168178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pimenta, A.S., Da Costa Monteiro, T.V., Fasciohi, M., Braga, R.M., De Souza, E.E., and De lina, K.M.G. (2018). Fast pyrolysis of trunk wood and stump wood from a Brazilian eucalyptus clore. Industrial Crops and Products, 125: 630638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rout, T., Pradhan, D., Singh, R. K., and Kumari, N. (2016). Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4: 36963705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Searcy, E. and Flynn, P.C. (2010). A criterion for selecting renewable energy process. Biomass & Bioenergy, 34(5): 798804.

  • Sensoz, S. and Angin, D. (2008). Pyrolysis of safflower (charthamustinctorius L.) seed press cake: part 1, the effects of pyrolysis parameters on the product yields. Bioresource Technology, 99: 54925497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sensoz, S., Demiral, I., and Gercel, H.F. (2006). Olive bagasse (oleaeuropa L.) pyrolysis. Bioresource Technology, 97: 429436.

  • Serrano, V.G., Villegas, J.P., Florindo, A.P., Valle, C.D., and Calahorro, C.V. (1996). FT-IR study of rockrose and of char and activated carbon. Journal of Analytical and Applied Pyrolysis, 36: 7180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shang, H., Du, W., Liu, Z., and Zhang, H. (2013). Development of microwave induced hydrodesulfurization of petroleum streams: a review. Journal of Industrial and Engineering Chemistry, 19(4): 10611068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Situmorang, Y. A., Zhao, Z., Chaihad, N., Wang, C., Anniwaer, A., Kassai, Y., Abudula, A., and Guand, G. (2021). Steam gasification of co-pyrolysis chars from various types of biomass. The International Journal of Hydrogen Energy, XX: 111.

    • Search Google Scholar
    • Export Citation
  • Tillman, D.A. (1978). Chap III. The value of wood as a fuel wood as an energy resource. New York: Academic press, pp. 6587.

  • Uzun, B.B., Putun, A.E., and Putun, E. (2007). Composition of products obtained via fast pyrolysis of olive oil residue: effect of pyrolysis temperature. Journal of Analytical and Applied Pyrolysis, 79: 147153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varma, A.K., Thakur, L.S., Shankar, R., and Mondal, P. (2019). Pyrolysis of wood sawdust: effects of process parameters on products yield and characterization of products. Waste Management, 89: 224235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watt, E., Abdelwahab, M. A., Mohanty, A. K., and Misra, M. (2020). Biocomposites from biobased polyamide 4, 10 and waste corn cob based bio-carbon. Composites. JCOMA.

    • Search Google Scholar
    • Export Citation
  • Worasuwannarak, N., Sonobe, T., and Tanthapanichakoon, W. (2007). Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis, 78: 265271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Y., Pudasainee, D., Gupta, R., Xu, Z., and Diao, Y. (2017). Bromination of petroleum coke for elemental mercury capture. Journal of Hazardous Materials, 33b: 232239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., Dell, K., Udugama, I. A., Young, B. R., and Baroutiau, S. (2020). Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. Journal of Cleaner Production, XX: 112.

    • Search Google Scholar
    • Export Citation
  • Yakub, M. I., Abdalla, A. Y., Feroz, K. K., Suzana, Y., Ibraheem, A., and Chin, S. A. (2015). Pyrolysis of oil palm residues in a fixed bed tubular reactor. Journal of Power and Energy Engineering, 3: 185193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Yan, R., Chen, H., Lee, D.H., Liang, D.T., and Zheng, C. (2006). Mechanism of palm oil waste pyrolysis in a packed bed. Energy Fuels, 20: 13211328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanting, Z. and Liyun, X. (2011). Research on risk management of petroleum operations. Energy Procedia, 5: 23302334.

  • Yu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B., Zhang, B., and Ma, S.(2016). Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers Manage, 2016(118): 111.

    • Search Google Scholar
    • Export Citation
  • Zabaniotou, A.A. (2010). Pyrolysis of forestry biomass by-products in Greece. Energy Sources, 21: 395403.

 

 

The author instruction is available in PDF.
Please, download the file from HERE.

 

 

Senior editors

Editor(s)-in-Chief: Felföldi, József

Chair of the Editorial Board Szendrő, Péter

Editorial Board

  • Beke, János (Szent István University, Faculty of Mechanical Engineerin, Gödöllő – Hungary)
  • Fenyvesi, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Szendrő, Péter (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Felföldi, József (Szent István University, Faculty of Food Science, Budapest – Hungary)

 

Advisory Board

  • De Baerdemaeker, Josse (KU Leuven, Faculty of Bioscience Engineering, Leuven - Belgium)
  • Funk, David B. (United States Department of Agriculture | USDA • Grain Inspection, Packers and Stockyards Administration (GIPSA), Kansas City – USA
  • Geyer, Martin (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Horticultural Engineering, Potsdam - Germany)
  • Janik, József (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Kutzbach, Heinz D. (Institut für Agrartechnik, Fg. Grundlagen der Agrartechnik, Universität Hohenheim – Germany)
  • Mizrach, Amos (Institute of Agricultural Engineering. ARO, the Volcani Center, Bet Dagan – Israel)
  • Neményi, Miklós (Széchenyi University, Department of Biosystems and Food Engineering, Győr – Hungary)
  • Schulze-Lammers, Peter (University of Bonn, Institute of Agricultural Engineering (ILT), Bonn – Germany)
  • Sitkei, György (University of Sopron, Institute of Wood Engineering, Sopron – Hungary)
  • Sun, Da-Wen (University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Dublin – Ireland)
  • Tóth, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)

Prof. Felföldi, József
Institute: Physics-Control Department, Szent István University
Address: 1118 Budapest Somlói út 14-16
Phone: +36 1 305 7206
E-mail: Felfoldi.Jozsef@etk.szie.hu

Indexing and Abstracting Services:

  • CABI

2020  
Scimago
H-index
8
Scimago
Journal Rank
0,197
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q3
Mechanical Engineering Q4
Scopus
Cite Score
33/69=0,5
Scopus
Cite Score Rank
Environmental Engineering 126/146 (Q4)
Industrial and Manufacturing Engineering 269/336 (Q3)
Mechanical Engineering 512/596 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
53
Scopus
Documents
41
Days from submission to acceptance 122
Days from acceptance to publication 40
Acceptance rate 86%

 

2019  
Scimago
H-index
6
Scimago
Journal Rank
0,123
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q4
Mechanical Engineering Q4
Scopus
Cite Score
18/33=0,5
Scopus
Cite Score Rank
Environmental Engineering 108/132 (Q4)
Industrial and Manufacturing Engineering 242/340 (Q3)
Mechanical Engineering 481/585 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
13
Scopus
Documents
5

 

Progress in Agricultural Engineering Sciences
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 145 EUR / 181 USD
Print + online subscription: 168 EUR / 210 USD
Subscription fee 2022 Online subsscription:  148 EUR / 185 USD
Print + online subscription: 172 EUR / 215 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Progress in Agricultural Engineering Sciences
Language English
Size B5
Year of
Foundation
2004
Publication
Programme
2021 Volume 17
Volumes
per Year
1
Issues
per Year
1
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-335X (Print)
ISSN 1787-0321 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 102 4 5
Sep 2021 102 3 3
Oct 2021 20 0 0
Nov 2021 0 0 0