Authors:
N. Anter Laboratory of Organic and Analytical Chemistry (LCOA), Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

Search for other papers by N. Anter in
Current site
Google Scholar
PubMed
Close
,
M. Y. Guida Laboratory of Organic and Analytical Chemistry (LCOA), Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

Search for other papers by M. Y. Guida in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5841-5271
,
M. Kasbaji Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco
Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty (FP-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

Search for other papers by M. Kasbaji in
Current site
Google Scholar
PubMed
Close
,
A. Chennani Laboratory of Organic and Analytical Chemistry (LCOA), Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

Search for other papers by A. Chennani in
Current site
Google Scholar
PubMed
Close
,
A. Medaghri-Alaoui Laboratory of Organic and Analytical Chemistry (LCOA), Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco
Department of Chemistry and Environment, Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

Search for other papers by A. Medaghri-Alaoui in
Current site
Google Scholar
PubMed
Close
,
E. M. Rakib Laboratory of Organic and Analytical Chemistry (LCOA), Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco
Higher School of Technology (EST-FBS), EST-Fkih Ben Saleh, University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

Search for other papers by E. M. Rakib in
Current site
Google Scholar
PubMed
Close
, and
A. Hannioui Laboratory of Organic and Analytical Chemistry (LCOA), Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco
Department of Chemistry and Environment, Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

Search for other papers by A. Hannioui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this scientific paper, thermochemical conversion of redwood (RW) was studied. Using the thermogravimetric analysis' technique (TGA), the thermal behavior of RW samples was examined at four heating rates ranging from 5 to 20 K min−1 in inert atmosphere between 300 and 900 K. Two main objectives have been set for this study; the first one was the determination of the kinetic decomposition parameters of RW (Pinus sylvestris L.), and the second one was the study of the variation of characteristic parameters from the TG-DTG curves of the main RW's components, such as; cellulose, hemicellulose and lignin. The kinetic analysis was performed using three isoconversional methods (Vyazovkin (VYA), Friedman (FR) and Flynn-Wall-Ozawa (FWO)), Avrami theory method and the Integral master-plots (Z(x)/Z(0.5)) method to estimate activation energy (E a ), reaction order (n), pre-exponential factor (A) and model kinetic (f(x)) for the thermal decomposition of cellulose, hemicellulose and lignin components.

The DTG and TG curves showed that three stages identify the thermal decomposition of RW, the first stage corresponds to the decomposition of hemicellulose and the second stage corresponds to the cellulose, while the third stage corresponds to the lignin's decomposition. For the range of conversion degree (x) investigated (0.1 ≤ x ≤ 0.7), the mean values of apparent activation energies for RW biomass were 127.60–130.65 KJ mol−1, 173.74–176.48 KJ mol−1 and 197.21–200.36 KJ mol−1 for hemicellulose, cellulose and lignin, respectively. Through varied temperatures from 550 to 600 K for hemicellulose, from 600 to 650 K for cellulose and from 750 to 800 K for lignin, the corresponding mean values of reaction order (n) were 0.200 for hemicellulose, 0.209 for cellulose and 0.047 for lignin. The pre-exponential factor's average values for three components of RW ranges from 0.08 × 1012 s−1 to 2.5 × 1012 s−1 (A hemicellulose = 1.09 × 1012 s−1), 0.10 × 1014 s−1 to 0.28 × 1014 s−1 (A cellulose = 0.17 × 1014 s−1) and 3.07 × 1016 s−1 to 3.69 × 1016 s−1 (A lignin = 3.33 × 1016 s−1), respectively. The experimental data of RW had overlapped the D 4, D 2 and F 3 in the conversion degree of 10–30%, 30–55% and 55–70% for the three components, respectively.

  • Akhtar, J. and Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable & Sustainable Energy Reviews, 16: 51015109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anca-Couce, A. (2016). Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science, 53: 4179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anca-Couce, A. , Tsekos, C. , Retschitzegger, S. , Zimbardi, F. , Funke, A. , Banks, S. , Kraia, T. , Marques, P. , Scharler, R. , De Jong, W. , and Kienzl, N. (2020). Biomass pyrolysis TGA assessment with an international round robin. Fuel, 276: 118002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anca-Couce, A. , Berger, A. , and Zobel, N. (2014). How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel, 123: 230240, https://doi.org/10.1016/j.fuel.2014.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antal, M.J. , Varhegyi, G. , and Jakab, E. (1998). Cellulose pyrolysis kinetics: revisited. Industrial & Engineering Chemistry Research, 37(4): 12671275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asadullah, M. , Rahman, M.A. , Ali, M.M. , Rahman, M.S. , Morin, M.A. , Sultan, M.B. , and Alam, M.R. (2007). Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel, 86: 25142520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayramzadeh, S. and Aghaei, P. (2020). Technology integration in complex healthcare environments: a systematic literature review. Applied Ergonomics, 92: 103351.

    • Search Google Scholar
    • Export Citation
  • Benedek, J. , Sebestyen, T.T. , and Bartok, B. (2018). Evaluation of renewable energy sources in peripheral areas and renewable energy based rural development. Renewable & Sustainable Energy Reviews, 90: 516535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branca, C. , Albano, A. , and Di Blasi, C. (2005). Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta, 429(2): 133141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, J. , Wu, W. , Liu, R. , and Huber, G.W. (2013). A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chemistry, 15(5): 1331. https://doi.org/10.1039/c3gc36958g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C. , Chen, W.-H. , Lin, B.-J. , Chang, J.-S. , and Ong, H.C. (2016). Impact of torrefaction on the composition, structure and reactivity of a microalga residue. Appl Energy, 181: 110e9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z. , Hu, M. , Zhu, X. , Guo, D. , Liu, S. , Hu, Z. , Xiao, B. , Wang, J. , and Laghari, M. (2015). Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology, 192: 441450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, C.D. (1961). Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5: 285292, https://doi.org/10.1002/app.1961.070051506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, C.D. (1965). Series approximations to the equation of thermogravimetric data. Nature, 207(4994): 290291.

  • Duan, D. , Zhang, Y. , Wang, Y. , Lei, H. , Wang, Q. , and Ruan, R. (2020). Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons. Energy, 209: 118454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, H.L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia; Wiley Online Library.

    • Search Google Scholar
    • Export Citation
  • Gronli, M. , Antal, M.J. , and Varhegyi, G. (1999). A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Industrial & Engineering Chemistry Research, 38(6): 22382244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grønli, M.G. , Varhegyi, G. , and Di Blasi, C. (2002). Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41(17): 42014208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guida, M.Y. , Bouaik, H. , Tabal, A. , Hannioui, A. , Solhy, A. , Barakat, A. , Aboulkas, A. , and El harfi, K. (2015). Thermochemical treatment of olive mill solid waste and olive mill wastewater: kinetic study. Journal of Thermal Analysis and Calorimetry, 123: 16571666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guida, M.Y. , Bouaik, H. , EL Mouden, L. , Moubarik, A. , Aboulkas, A. , El Harfi, K. , and Hannioui, A. (2017). Utilization of starink approach and avrami theory to evaluate the kinetic parameters of the pyrolysis of olive mill solid waste and olive mill wastewater. Journal of Advanced Chemical Engineering, 7: 18.

    • Search Google Scholar
    • Export Citation
  • Guida, M.Y. , Lanaya, S.E. , Rbihi, Z. , and Hannioui, A. (2019). Thermal degradation behaviors of sawdust wood waste: pyrolysis kinetic and mechanism. Journal of Materials and Environmental Science, 10(8): 742755.

    • Search Google Scholar
    • Export Citation
  • Guida, M.Y. , Lanaya, S.E. , Laghchioua, F.E. , Rbihi, Z. , and Hannioui, A. (2020). Production of bio-oil and bio-char from pyrolysis of sawdust wood waste (SWW). Progress in Agricultural Engineering Sciences, 16(1): 6180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guida, M.Y. , Rebbah, B. , Anter, N. , Medaghri-alaoui, A. , Rakib, E.M. , and Hannioui, A. (2021). Biofuels and biochars production from agricultural biomass wastes by thermochemical conversion technologies: thermogravimetric analysis and pyrolysis studies. Progress in Agricultural Engineering Sciences, 17(1): 1536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M. , Chen, Z. , Wang, S. , Guo, D. , Ma, C. , Zhou, Y. , Chen, J. , Laghari, M. , Fazal, S. , Xiao, B. , Zhang, B. , and Ma, S. (2016). Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers Manage, 118: 111. https://doi.org/10.1016/j.enconman.2016.03.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.F. , Chiueh, P.T. , and Lo, S.L. (2016). A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research, 26(3): 103109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ioannidou, O. , Zabaniotou, A. , Antonakou, E.V. , Papazisi, K.M. , Lappas, A.A. , and Athanassiou, C. (2009). Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renewable and Sustainable Energy Reviews, 13: 750762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaur, R. , Gera, P. , Jha, M.K. , and Bhaskar, T. (2018). Pyrolysis kinetics and thermodynamic parameters of castor (Ricinuscommunis) residue using thermogravimetric analysis. Bioresource Technology, 250: 422428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, H. , Khan, I. , and Tienbinh, T. (2020). The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: a panel quantile regression approach. Energy Reports, 6: 859867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kissinger, H.E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29: 17021706.

  • Klaas, M. , Greenhalf, C. , Ouadi, M. , Jahangiri, H. , Hornung, A. , Briens, C. , and Berruti, F. (2020). The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results in Engineering, 7: 100165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar Singh, R. , Patil, T. , Verma, A. , Tekade, S.P. , and Swarkar, A.N. (2021). Insights into kinetics, reaction mechanism, and thermodynamic analysis of pyrolysis of rice straw from rice bowl of India. Biressource Technology Reports, 13: 100639.

    • Search Google Scholar
    • Export Citation
  • Kumar Varma, A. , Thakur, L.S. , Shankar, R. , and Mondal, P. (2019). Pyrolysis of wood sawdust: effects of process parameters on products yield and characterization of products. Waste Management, 89: 224235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liew, J.X. , Minh Loy, A.C. , Fui Chin, B.L. , Ainouss, A. , Shahbaz, M. , Al-Ansari, T. , Govindan, R. , and Chai, Y.H. (2021). Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renewable Energy, 170: 948963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J.G. , Jiang, X.M. , Zhou, L.S. , Han, X.X. , and Cui, Z.G. (2009). Pyrolysis treatment of oil sludge and model-free kinetics analysis. Journal of Hazardous Materials, 161: 12081215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mafu Lihle, D. , Hein, W.J.P. , Neomagus , Raymond, C. , Everson, G.N. , Okolo , Christien, A. , Strydom , and Bunt John, R. (2018). The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification. Bioresource Technology, 258: 70e8.

    • Search Google Scholar
    • Export Citation
  • Malakar, A. , Kanel, S.R. , Ray, C. , Snow Daniel, D. , and Nadagouda, M.N. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: a review. Science of Total Environment, 759: 143470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meshitsuka, G. and Isogai, A. (1996). Chemical structures of cellulose, hemicellulose and lignin. In: Hon, D.N. (Ed.), Chemical modification of lignocellulosic materials. Marcel Dekker Inc., New York, pp. 1134.

    • Search Google Scholar
    • Export Citation
  • Minkova, V. , Razvigorova, M. , Bjornbom, E. , Zanzi, R. , Budinova, T. , and Petrov, N. (2001). Effect of water vapour and biomass nature on the yield and quality of pyrolysis products from biomass. Fuel Processing Technology, 70: 5361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, G. , Kumar, J. , and Bhaskar, T. (2015). Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 182: 282288.

  • Moham, D. , Pittman, C.U. , and Steel, P.H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20: 848889.

  • Moya, R. , Rodríguez-Zúñiga, A. , Puente-Urbina, A. , and Gaitán-Álvarez, J. (2018). Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica. Energy, 149: 1e10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, L. , Chen, J. , Yin, H. , Song, X. , Li, A. , and Chi, X. (2015). Pyrolysis behaviors and kinetics of refining and chemicals wastewater, lignite and their blends through TGA. Bioresource Technology, 180: 2231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, C.A. , Boateng, A.A. , Goldberg, N.M. , Lima, I.M. , Laird, D.A. , and Hicks, K.B. (2010). Bio-oil and bio char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 34: 6774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11): 18811886.

  • Ozbay, N. , Putun, A.E. , Uzun, B.B. , and Putun, E. (2001). Biocrude from biomass: pyrolysis of cottonseed cake. Renewable Energy, 24(3–4): 615625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phuakpunk, K. , Chalermsinsuwan, B. , and Assabumrungrat, S. (2020). Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports, 6: 168178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pimenta, A.S. , Da Costa Monteiro, T.V. , Fasciohi, M. , Braga, R.M. , De Souza, E.E. , and De lina, K.M.G. (2018). Fast pyrolysis of trunk wood and stump wood from a Brazilian eucalyptus clore. Industrial Crops and Products, 125: 630638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poletto, M. (2016). Thermogravimetric analysis and kinetic study of pine wood pyrolysis. Ciência da Madeira (Brazilian Journal of Wood Science), 7(2): 111118.

    • Search Google Scholar
    • Export Citation
  • Rout, T. , Pradhan, D. , Singh, R.K. , and Kumari, N. (2016). Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4: 36963705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Jimenez, P.E. , del Rocio Rodriguez-Laguna, M. , Perez-Maqueda, L.A. , and Criado, J.M. (2014). Comments on “Pyrolysis kinetics of biomass from product information”(Applied Energy 110 (2013) 1–8) regarding the inability to obtain meaningful kinetic parameters from a single non-isothermal curve. Applied Energy, 125: 132135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sensoz, S. , Demiral, I. , and Gercel, H.F. (2006). Olive bagasse (oleaeuropa L.) pyrolysis. Bioresource Technology, 97: 429436.

  • Shang, H. , Du, W. , Liu, Z. , and Zhang, H. (2013). Development of microwave induced hydrodesulfurization of petroleum streams: a review. Journal of Industrial and Engineering Chemistry, 19(4): 10611068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Situmorang, Y.A. , Zhao, Z. , Chaihad, N. , Wang, C. , Anniwaer, A. , Kassai, Y. , Abudula, A. , and Guand, G. (2021). Steam gasification of co-pyrolysis chars from various types of biomass. The International Journal of Hydrogen Energy, XX: 111.

    • Search Google Scholar
    • Export Citation
  • Slopiecka, K. , Bartocci, P. , and Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 97: 491497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabal, A. , Barakat, A. , Aboulkas, A. , and Elharfi, K. (2021). Pyrolysis of ficus nitida wood: determination of kinetic and thermodynamic parameters. Fuel, 283: 113253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uzun, B.B. , Putun, A.E. , and Putun, E. (2007). Composition of products obtained via fast pyrolysis of olive oil residue: effect of pyrolysis temperature. Journal of Analytical and Applied Pyrolysis, 79: 147153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vyazovkin, S. (2006). Model-free kinetics. Journal of Thermal Analysis and Calorimetry, 83(1): 4551.

  • Vyazovkin, S. and Lesnikovick, A. (1988). Transformation of “degree of conversion against temperature” into “degree of conversion against time” kinetic data. Russian Journal of Physical Chemistry A, 62(1525): e7.

    • Search Google Scholar
    • Export Citation
  • Watt, E. , Abdelwahab, M.A. , Mohanty, A.K. , and Misra, M. (2020). Biocomposites from biobased polyamide 4, 10 and waste corn cob based bio-carbon. Composites, JCOMA.

    • Search Google Scholar
    • Export Citation
  • White, J.E. , Catallo, W.J. , and Legendre, B.L. (2011). Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1): 133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worasuwannarak, N. , Sonobe, T. , and Tanthapanichakoon, W. (2007). Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis, 78: 265271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Y. , Pudasainee, D. , Gupta, R. , Xu, Z. , and Diao, Y. (2017). Bromination of petroleum coke for elemental mercury capture. Journal of Hazardous Materials, 33b: 232239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X. , Dell, K. , Udugama, I.A. , Young, B.R. , and Baroutiau, S. (2020). Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. Journal of Cleaner Production, XX: 112.

    • Search Google Scholar
    • Export Citation
  • Yanting, Z. , and Liyun, X. (2011). Research on risk management of petroleum operations. Energy Procedia, 5: 23302334.

  • Zabaniotou, A.A. (2010). Pyrolysis of forestry biomass by-products in Greece. Energy Sources, 21: 395403.

  • Zhou, H. , Long, Y.Q. , Meng, A.H. , Li, Q.H. , and Zhang, Y.G. (2013). The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochim Acta, 566: 36e43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top

 

 

The author instruction is available in PDF.
Please, download the file from HERE.

 

 

Senior editors

Editor(s)-in-Chief: Felföldi, József

Chair of the Editorial Board Szendrő, Péter

Editorial Board

  • Beke, János (Szent István University, Faculty of Mechanical Engineerin, Gödöllő – Hungary)
  • Fenyvesi, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Szendrő, Péter (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Felföldi, József (Szent István University, Faculty of Food Science, Budapest – Hungary)

 

Advisory Board

  • De Baerdemaeker, Josse (KU Leuven, Faculty of Bioscience Engineering, Leuven - Belgium)
  • Funk, David B. (United States Department of Agriculture | USDA • Grain Inspection, Packers and Stockyards Administration (GIPSA), Kansas City – USA
  • Geyer, Martin (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Horticultural Engineering, Potsdam - Germany)
  • Janik, József (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Kutzbach, Heinz D. (Institut für Agrartechnik, Fg. Grundlagen der Agrartechnik, Universität Hohenheim – Germany)
  • Mizrach, Amos (Institute of Agricultural Engineering. ARO, the Volcani Center, Bet Dagan – Israel)
  • Neményi, Miklós (Széchenyi University, Department of Biosystems and Food Engineering, Győr – Hungary)
  • Schulze-Lammers, Peter (University of Bonn, Institute of Agricultural Engineering (ILT), Bonn – Germany)
  • Sitkei, György (University of Sopron, Institute of Wood Engineering, Sopron – Hungary)
  • Sun, Da-Wen (University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Dublin – Ireland)
  • Tóth, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)

Prof. Felföldi, József
Institute: MATE - Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Measurements and Process Control
Address: 1118 Budapest Somlói út 14-16
E-mail: felfoldi.jozsef@uni-mate.hu

Indexing and Abstracting Services:

  • SCOPUS
  • CABI

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
8
Scimago
Journal Rank
0,141
Scimago Quartile Score Environmental Engineering (Q4)
Industrial and Manufacturing Engineering (Q4)
Mechanical Engineering (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Industrial and Manufacturing Engineering 261/338 (Q4)
Environmental Engineering 138/173 (Q4)
Mechanical Engineering 495/601 (Q4)
Scopus
SNIP
0,381

2020  
Scimago
H-index
8
Scimago
Journal Rank
0,197
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q3
Mechanical Engineering Q4
Scopus
Cite Score
33/69=0,5
Scopus
Cite Score Rank
Environmental Engineering 126/146 (Q4)
Industrial and Manufacturing Engineering 269/336 (Q3)
Mechanical Engineering 512/596 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
53
Scopus
Documents
41
Days from submission to acceptance 122
Days from acceptance to publication 40
Acceptance rate 86%

 

2019  
Scimago
H-index
6
Scimago
Journal Rank
0,123
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q4
Mechanical Engineering Q4
Scopus
Cite Score
18/33=0,5
Scopus
Cite Score Rank
Environmental Engineering 108/132 (Q4)
Industrial and Manufacturing Engineering 242/340 (Q3)
Mechanical Engineering 481/585 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
13
Scopus
Documents
5

 

Progress in Agricultural Engineering Sciences
Publication Model Hybrid
Submission Fee none
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Article Processing Charge 900 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription:  148 EUR / 185 USD
Print + online subscription: 172 EUR / 215 USD
Subscription fee 2023 Online subsscription: 152 EUR / 185 USD
Print + online subscription: 177 EUR / 215 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles can be purchased at the prices indicated.

Progress in Agricultural Engineering Sciences
Language English
Size B5
Year of
Foundation
2004
Volumes
per Year
1
Issues
per Year
1
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-335X (Print)
ISSN 1787-0321 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2022 0 0 0
Apr 2022 0 0 0
May 2022 0 0 0
Jun 2022 0 0 0
Jul 2022 123 10 11
Aug 2022 28 0 0
Sep 2022 0 0 0