In this scientific paper, thermochemical conversion of redwood (RW) was studied. Using the thermogravimetric analysis' technique (TGA), the thermal behavior of RW samples was examined at four heating rates ranging from 5 to 20 K min−1 in inert atmosphere between 300 and 900 K. Two main objectives have been set for this study; the first one was the determination of the kinetic decomposition parameters of RW (Pinus sylvestris L.), and the second one was the study of the variation of characteristic parameters from the TG-DTG curves of the main RW's components, such as; cellulose, hemicellulose and lignin. The kinetic analysis was performed using three isoconversional methods (Vyazovkin (VYA), Friedman (FR) and Flynn-Wall-Ozawa (FWO)), Avrami theory method and the Integral master-plots (Z(x)/Z(0.5)) method to estimate activation energy (E a ), reaction order (n), pre-exponential factor (A) and model kinetic (f(x)) for the thermal decomposition of cellulose, hemicellulose and lignin components.
The DTG and TG curves showed that three stages identify the thermal decomposition of RW, the first stage corresponds to the decomposition of hemicellulose and the second stage corresponds to the cellulose, while the third stage corresponds to the lignin's decomposition. For the range of conversion degree (x) investigated (0.1 ≤ x ≤ 0.7), the mean values of apparent activation energies for RW biomass were 127.60–130.65 KJ mol−1, 173.74–176.48 KJ mol−1 and 197.21–200.36 KJ mol−1 for hemicellulose, cellulose and lignin, respectively. Through varied temperatures from 550 to 600 K for hemicellulose, from 600 to 650 K for cellulose and from 750 to 800 K for lignin, the corresponding mean values of reaction order (n) were 0.200 for hemicellulose, 0.209 for cellulose and 0.047 for lignin. The pre-exponential factor's average values for three components of RW ranges from 0.08 × 1012 s−1 to 2.5 × 1012 s−1 (A hemicellulose = 1.09 × 1012 s−1), 0.10 × 1014 s−1 to 0.28 × 1014 s−1 (A cellulose = 0.17 × 1014 s−1) and 3.07 × 1016 s−1 to 3.69 × 1016 s−1 (A lignin = 3.33 × 1016 s−1), respectively. The experimental data of RW had overlapped the D 4, D 2 and F 3 in the conversion degree of 10–30%, 30–55% and 55–70% for the three components, respectively.
Akhtar, J. and Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable & Sustainable Energy Reviews, 16: 5101–5109.
Anca-Couce, A. (2016). Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science, 53: 41–79.
Anca-Couce, A. , Tsekos, C. , Retschitzegger, S. , Zimbardi, F. , Funke, A. , Banks, S. , Kraia, T. , Marques, P. , Scharler, R. , De Jong, W. , and Kienzl, N. (2020). Biomass pyrolysis TGA assessment with an international round robin. Fuel, 276: 118002.
Anca-Couce, A. , Berger, A. , and Zobel, N. (2014). How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel, 123: 230–240, https://doi.org/10.1016/j.fuel.2014.01.014.
Antal, M.J. , Varhegyi, G. , and Jakab, E. (1998). Cellulose pyrolysis kinetics: revisited. Industrial & Engineering Chemistry Research, 37(4): 1267–1275.
Asadullah, M. , Rahman, M.A. , Ali, M.M. , Rahman, M.S. , Morin, M.A. , Sultan, M.B. , and Alam, M.R. (2007). Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel, 86: 2514–2520.
Bayramzadeh, S. and Aghaei, P. (2020). Technology integration in complex healthcare environments: a systematic literature review. Applied Ergonomics, 92: 103351.
Benedek, J. , Sebestyen, T.T. , and Bartok, B. (2018). Evaluation of renewable energy sources in peripheral areas and renewable energy based rural development. Renewable & Sustainable Energy Reviews, 90: 516–535.
Branca, C. , Albano, A. , and Di Blasi, C. (2005). Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta, 429(2): 133–141.
Cai, J. , Wu, W. , Liu, R. , and Huber, G.W. (2013). A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chemistry, 15(5): 1331. https://doi.org/10.1039/c3gc36958g.
Chen, Y.-C. , Chen, W.-H. , Lin, B.-J. , Chang, J.-S. , and Ong, H.C. (2016). Impact of torrefaction on the composition, structure and reactivity of a microalga residue. Appl Energy, 181: 110e9.
Chen, Z. , Hu, M. , Zhu, X. , Guo, D. , Liu, S. , Hu, Z. , Xiao, B. , Wang, J. , and Laghari, M. (2015). Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology, 192: 441–450.
Doyle, C.D. (1961). Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5: 285–292, https://doi.org/10.1002/app.1961.070051506.
Doyle, C.D. (1965). Series approximations to the equation of thermogravimetric data. Nature, 207(4994): 290–291.
Duan, D. , Zhang, Y. , Wang, Y. , Lei, H. , Wang, Q. , and Ruan, R. (2020). Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons. Energy, 209: 118454.
Friedman, H.L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia; Wiley Online Library.
Gronli, M. , Antal, M.J. , and Varhegyi, G. (1999). A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Industrial & Engineering Chemistry Research, 38(6): 2238–2244.
Grønli, M.G. , Varhegyi, G. , and Di Blasi, C. (2002). Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41(17): 4201–4208.
Guida, M.Y. , Bouaik, H. , Tabal, A. , Hannioui, A. , Solhy, A. , Barakat, A. , Aboulkas, A. , and El harfi, K. (2015). Thermochemical treatment of olive mill solid waste and olive mill wastewater: kinetic study. Journal of Thermal Analysis and Calorimetry, 123: 1657–1666.
Guida, M.Y. , Bouaik, H. , EL Mouden, L. , Moubarik, A. , Aboulkas, A. , El Harfi, K. , and Hannioui, A. (2017). Utilization of starink approach and avrami theory to evaluate the kinetic parameters of the pyrolysis of olive mill solid waste and olive mill wastewater. Journal of Advanced Chemical Engineering, 7: 1–8.
Guida, M.Y. , Lanaya, S.E. , Rbihi, Z. , and Hannioui, A. (2019). Thermal degradation behaviors of sawdust wood waste: pyrolysis kinetic and mechanism. Journal of Materials and Environmental Science, 10(8): 742–755.
Guida, M.Y. , Lanaya, S.E. , Laghchioua, F.E. , Rbihi, Z. , and Hannioui, A. (2020). Production of bio-oil and bio-char from pyrolysis of sawdust wood waste (SWW). Progress in Agricultural Engineering Sciences, 16(1): 61–80.
Guida, M.Y. , Rebbah, B. , Anter, N. , Medaghri-alaoui, A. , Rakib, E.M. , and Hannioui, A. (2021). Biofuels and biochars production from agricultural biomass wastes by thermochemical conversion technologies: thermogravimetric analysis and pyrolysis studies. Progress in Agricultural Engineering Sciences, 17(1): 15–36.
Hu, M. , Chen, Z. , Wang, S. , Guo, D. , Ma, C. , Zhou, Y. , Chen, J. , Laghari, M. , Fazal, S. , Xiao, B. , Zhang, B. , and Ma, S. (2016). Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers Manage, 118: 1–11. https://doi.org/10.1016/j.enconman.2016.03.058.
Huang, Y.F. , Chiueh, P.T. , and Lo, S.L. (2016). A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research, 26(3): 103–109.
Ioannidou, O. , Zabaniotou, A. , Antonakou, E.V. , Papazisi, K.M. , Lappas, A.A. , and Athanassiou, C. (2009). Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renewable and Sustainable Energy Reviews, 13: 750–762.
Kaur, R. , Gera, P. , Jha, M.K. , and Bhaskar, T. (2018). Pyrolysis kinetics and thermodynamic parameters of castor (Ricinuscommunis) residue using thermogravimetric analysis. Bioresource Technology, 250: 422–428.
Khan, H. , Khan, I. , and Tienbinh, T. (2020). The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: a panel quantile regression approach. Energy Reports, 6: 859–867.
Kissinger, H.E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29: 1702–1706.
Klaas, M. , Greenhalf, C. , Ouadi, M. , Jahangiri, H. , Hornung, A. , Briens, C. , and Berruti, F. (2020). The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results in Engineering, 7: 100165.
Kumar Singh, R. , Patil, T. , Verma, A. , Tekade, S.P. , and Swarkar, A.N. (2021). Insights into kinetics, reaction mechanism, and thermodynamic analysis of pyrolysis of rice straw from rice bowl of India. Biressource Technology Reports, 13: 100639.
Kumar Varma, A. , Thakur, L.S. , Shankar, R. , and Mondal, P. (2019). Pyrolysis of wood sawdust: effects of process parameters on products yield and characterization of products. Waste Management, 89: 224–235.
Liew, J.X. , Minh Loy, A.C. , Fui Chin, B.L. , Ainouss, A. , Shahbaz, M. , Al-Ansari, T. , Govindan, R. , and Chai, Y.H. (2021). Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renewable Energy, 170: 948–963.
Liu, J.G. , Jiang, X.M. , Zhou, L.S. , Han, X.X. , and Cui, Z.G. (2009). Pyrolysis treatment of oil sludge and model-free kinetics analysis. Journal of Hazardous Materials, 161: 1208–1215.
Mafu Lihle, D. , Hein, W.J.P. , Neomagus , Raymond, C. , Everson, G.N. , Okolo , Christien, A. , Strydom , and Bunt John, R. (2018). The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification. Bioresource Technology, 258: 70e8.
Malakar, A. , Kanel, S.R. , Ray, C. , Snow Daniel, D. , and Nadagouda, M.N. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: a review. Science of Total Environment, 759: 143470.
Meshitsuka, G. and Isogai, A. (1996). Chemical structures of cellulose, hemicellulose and lignin. In: Hon, D.N. (Ed.), Chemical modification of lignocellulosic materials. Marcel Dekker Inc., New York, pp. 11–34.
Minkova, V. , Razvigorova, M. , Bjornbom, E. , Zanzi, R. , Budinova, T. , and Petrov, N. (2001). Effect of water vapour and biomass nature on the yield and quality of pyrolysis products from biomass. Fuel Processing Technology, 70: 53–61.
Mishra, G. , Kumar, J. , and Bhaskar, T. (2015). Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 182: 282–288.
Moham, D. , Pittman, C.U. , and Steel, P.H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20: 848–889.
Moya, R. , Rodríguez-Zúñiga, A. , Puente-Urbina, A. , and Gaitán-Álvarez, J. (2018). Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica. Energy, 149: 1e10.
Mu, L. , Chen, J. , Yin, H. , Song, X. , Li, A. , and Chi, X. (2015). Pyrolysis behaviors and kinetics of refining and chemicals wastewater, lignite and their blends through TGA. Bioresource Technology, 180: 22–31.
Mullen, C.A. , Boateng, A.A. , Goldberg, N.M. , Lima, I.M. , Laird, D.A. , and Hicks, K.B. (2010). Bio-oil and bio char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 34: 67–74.
Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11): 1881–1886.
Ozbay, N. , Putun, A.E. , Uzun, B.B. , and Putun, E. (2001). Biocrude from biomass: pyrolysis of cottonseed cake. Renewable Energy, 24(3–4): 615–625.
Phuakpunk, K. , Chalermsinsuwan, B. , and Assabumrungrat, S. (2020). Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports, 6: 168–178.
Pimenta, A.S. , Da Costa Monteiro, T.V. , Fasciohi, M. , Braga, R.M. , De Souza, E.E. , and De lina, K.M.G. (2018). Fast pyrolysis of trunk wood and stump wood from a Brazilian eucalyptus clore. Industrial Crops and Products, 125: 630–638.
Poletto, M. (2016). Thermogravimetric analysis and kinetic study of pine wood pyrolysis. Ciência da Madeira (Brazilian Journal of Wood Science), 7(2): 111–118.
Rout, T. , Pradhan, D. , Singh, R.K. , and Kumari, N. (2016). Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4: 3696–3705.
Sanchez-Jimenez, P.E. , del Rocio Rodriguez-Laguna, M. , Perez-Maqueda, L.A. , and Criado, J.M. (2014). Comments on “Pyrolysis kinetics of biomass from product information”(Applied Energy 110 (2013) 1–8) regarding the inability to obtain meaningful kinetic parameters from a single non-isothermal curve. Applied Energy, 125: 132–135.
Sensoz, S. , Demiral, I. , and Gercel, H.F. (2006). Olive bagasse (oleaeuropa L.) pyrolysis. Bioresource Technology, 97: 429–436.
Shang, H. , Du, W. , Liu, Z. , and Zhang, H. (2013). Development of microwave induced hydrodesulfurization of petroleum streams: a review. Journal of Industrial and Engineering Chemistry, 19(4): 1061–1068.
Situmorang, Y.A. , Zhao, Z. , Chaihad, N. , Wang, C. , Anniwaer, A. , Kassai, Y. , Abudula, A. , and Guand, G. (2021). Steam gasification of co-pyrolysis chars from various types of biomass. The International Journal of Hydrogen Energy, XX: 1–11.
Slopiecka, K. , Bartocci, P. , and Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 97: 491–497.
Tabal, A. , Barakat, A. , Aboulkas, A. , and Elharfi, K. (2021). Pyrolysis of ficus nitida wood: determination of kinetic and thermodynamic parameters. Fuel, 283: 113253.
Uzun, B.B. , Putun, A.E. , and Putun, E. (2007). Composition of products obtained via fast pyrolysis of olive oil residue: effect of pyrolysis temperature. Journal of Analytical and Applied Pyrolysis, 79: 147–153.
Vyazovkin, S. (2006). Model-free kinetics. Journal of Thermal Analysis and Calorimetry, 83(1): 45–51.
Vyazovkin, S. and Lesnikovick, A. (1988). Transformation of “degree of conversion against temperature” into “degree of conversion against time” kinetic data. Russian Journal of Physical Chemistry A, 62(1525): e7.
Watt, E. , Abdelwahab, M.A. , Mohanty, A.K. , and Misra, M. (2020). Biocomposites from biobased polyamide 4, 10 and waste corn cob based bio-carbon. Composites, JCOMA.
White, J.E. , Catallo, W.J. , and Legendre, B.L. (2011). Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1): 1–33.
Worasuwannarak, N. , Sonobe, T. , and Tanthapanichakoon, W. (2007). Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis, 78: 265–271.
Xiao, Y. , Pudasainee, D. , Gupta, R. , Xu, Z. , and Diao, Y. (2017). Bromination of petroleum coke for elemental mercury capture. Journal of Hazardous Materials, 33b: 232–239.
Xin, X. , Dell, K. , Udugama, I.A. , Young, B.R. , and Baroutiau, S. (2020). Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. Journal of Cleaner Production, XX: 1–12.
Yanting, Z. , and Liyun, X. (2011). Research on risk management of petroleum operations. Energy Procedia, 5: 2330–2334.
Zabaniotou, A.A. (2010). Pyrolysis of forestry biomass by-products in Greece. Energy Sources, 21: 395–403.
Zhou, H. , Long, Y.Q. , Meng, A.H. , Li, Q.H. , and Zhang, Y.G. (2013). The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochim Acta, 566: 36e43.